summaryrefslogtreecommitdiff
path: root/content/know/concept/equation-of-motion-theory/index.pdc
diff options
context:
space:
mode:
Diffstat (limited to 'content/know/concept/equation-of-motion-theory/index.pdc')
-rw-r--r--content/know/concept/equation-of-motion-theory/index.pdc203
1 files changed, 203 insertions, 0 deletions
diff --git a/content/know/concept/equation-of-motion-theory/index.pdc b/content/know/concept/equation-of-motion-theory/index.pdc
new file mode 100644
index 0000000..e7b1120
--- /dev/null
+++ b/content/know/concept/equation-of-motion-theory/index.pdc
@@ -0,0 +1,203 @@
+---
+title: "Equation-of-motion theory"
+firstLetter: "E"
+publishDate: 2021-11-08
+categories:
+- Physics
+- Quantum mechanics
+
+date: 2021-11-08T18:09:29+01:00
+draft: false
+markup: pandoc
+---
+
+# Equation-of-motion theory
+
+In many-body quantum theory, **equation-of-motion theory**
+is a method to calculate the time evolution of a system's properties
+using [Green's functions](/know/concept/greens-functions/).
+
+Starting from the definition of
+the retarded single-particle Green's function $G_{\nu \nu'}^R(t, t')$,
+we simply take the $t$-derivative
+(we could do the same with the advanced function $G_{\nu \nu'}^A$):
+
+$$\begin{aligned}
+ i \hbar \pdv{G^R_{\nu \nu'}(t, t')}{t}
+ &= \pdv{\Theta(t \!-\! t')}{t} \expval{\comm*{\hat{c}_\nu(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}
+ + \Theta(t \!-\! t') \pdv{t}\expval{\comm*{\hat{c}_\nu(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}
+ \\
+ &= \delta(t \!-\! t') \expval{\comm*{\hat{c}_\nu(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}
+ + \Theta(t \!-\! t') \expval{\comm{\dv{\hat{c}_\nu(t)}{t}}{\hat{c}_{\nu'}^\dagger(t)}_{\mp}}
+\end{aligned}$$
+
+Where we have used that the derivative
+of a [Heaviside step function](/know/concept/heaviside-step-function/) $\Theta$
+is a [Dirac delta function](/know/concept/dirac-delta-function/) $\delta$.
+Also, from the [second quantization](/know/concept/second-quantization/),
+$\expval**{\comm*{\hat{c}_\nu(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}$
+for $t = t'$ is zero when $\nu \neq \nu'$.
+
+Since we are in the [Heisenberg picture](/know/concept/heisenberg-picture/),
+we know the equation of motion of $\hat{c}_\nu(t)$:
+
+$$\begin{aligned}
+ \dv{\hat{c}_\nu(t)}{t}
+ = \frac{i}{\hbar} \comm*{\hat{H}_0(t)}{\hat{c}_\nu(t)} + \frac{i}{\hbar} \comm*{\hat{H}_\mathrm{int}(t)}{\hat{c}_\nu(t)}
+\end{aligned}$$
+
+Where the single-particle part of the Hamiltonian $\hat{H}_0$
+and the interaction part $\hat{H}_\mathrm{int}$
+are assumed to be time-independent in the Schrödinger picture.
+We thus get:
+
+$$\begin{aligned}
+ i \hbar \pdv{G^R_{\nu \nu'}}{t}
+ &= \delta_{\nu \nu'} \delta(t \!-\! t')+ \frac{i}{\hbar} \Theta(t \!-\! t')
+ \expval{\comm{\comm*{\hat{H}_0}{\hat{c}_\nu} + \comm*{\hat{H}_\mathrm{int}}{\hat{c}_\nu}}{\hat{c}_{\nu'}^\dagger}_{\mp}}
+\end{aligned}$$
+
+The most general form of $\hat{H}_0$, for any basis,
+is as follows, where $u_{\nu' \nu''}$ are constants:
+
+$$\begin{aligned}
+ \hat{H}_0
+ = \sum_{\nu' \nu''} u_{\nu' \nu''} \hat{c}_{\nu'}^\dagger \hat{c}_{\nu''}
+ \quad \implies \quad
+ \comm*{\hat{H}_0}{\hat{c}_\nu}
+ = - \sum_{\nu''} u_{\nu \nu''} \hat{c}_{\nu''}
+\end{aligned}$$
+
+<div class="accordion">
+<input type="checkbox" id="proof-commH0"/>
+<label for="proof-commH0">Proof</label>
+<div class="hidden">
+<label for="proof-commH0">Proof.</label>
+Using the commutator identity for $\comm*{A B}{C}$,
+we decompose it like so:
+
+$$\begin{aligned}
+ \comm*{\hat{H}_0}{\hat{c}_\nu}
+ &= \sum_{\nu' \nu''} u_{\nu \nu''} \comm*{\hat{c}_{\nu'}^\dagger \hat{c}_{\nu''}}{\hat{c}_\nu}
+ = \sum_{\nu' \nu''} u_{\nu' \nu''} \Big( \hat{c}_{\nu'}^\dagger \comm*{\hat{c}_{\nu''}}{\hat{c}_\nu}
+ + \comm*{\hat{c}_{\nu'}^\dagger}{\hat{c}_\nu} \hat{c}_{\nu''} \Big)
+\end{aligned}$$
+
+Bosons have well-known commutation relations,
+so the result follows directly:
+
+$$\begin{aligned}
+ \comm*{\hat{H}_0}{\hat{b}_\nu}
+ &= \sum_{\nu' \nu''} u_{\nu' \nu''} \Big( \hat{b}_{\nu'}^\dagger \comm*{\hat{b}_{\nu''}}{\hat{b}_\nu}
+ + \comm*{\hat{b}_{\nu'}^\dagger}{\hat{b}_\nu} \hat{b}_{\nu''} \Big)
+ = - \sum_{\nu''} u_{\nu \nu''} \hat{b}_{\nu''}
+\end{aligned}$$
+
+Fermions only have anticommutation relations,
+so a bit more work is necessary:
+
+$$\begin{aligned}
+ \comm*{\hat{H}_0}{\hat{f}_{\!\nu}}
+ &= \sum_{\nu' \nu''} u_{\nu' \nu''} \Big( \hat{f}_{\!\nu'}^\dagger \comm*{\hat{f}_{\!\nu''}}{\hat{f}_{\!\nu}}
+ + \comm*{\hat{f}_{\!\nu'}^\dagger}{\hat{f}_{\!\nu}} \hat{f}_{\!\nu''} \Big)
+ \\
+ &= \sum_{\nu' \nu''} u_{\nu' \nu''} \Big( \hat{f}_{\!\nu'}^\dagger \acomm*{\hat{f}_{\!\nu''}}{\hat{f}_{\!\nu}}
+ - 2 \hat{f}_{\!\nu'}^\dagger \hat{f}_{\!\nu} \hat{f}_{\!\nu''}
+ + \acomm*{\hat{f}_{\!\nu'}^\dagger}{\hat{f}_{\!\nu}} \hat{f}_{\!\nu''}
+ - 2 \hat{f}_{\!\nu} \hat{f}_{\!\nu'}^\dagger \hat{f}_{\!\nu''} \Big)
+ \\
+ &= \sum_{\nu' \nu''} u_{\nu' \nu''} \Big( \delta_{\nu \nu'} \hat{f}_{\!\nu''}
+ - 2 \acomm*{\hat{f}_{\!\nu'}^\dagger}{\hat{f}_{\!\nu}} \hat{f}_{\!\nu''} \Big)
+ = - \sum_{\nu''} u_{\nu \nu''} \hat{f}_{\!\nu''}
+\end{aligned}$$
+</div>
+</div>
+
+Substituting this into $G_{\nu \nu'}^R$'s equation of motion,
+we recognize another Green's function $G_{\nu'' \nu'}^R$:
+
+$$\begin{aligned}
+ i \hbar \pdv{G^R_{\nu \nu'}}{t}
+ &= \delta_{\nu \nu'} \delta(t \!-\! t') + \frac{i}{\hbar} \Theta(t \!-\! t')
+ \bigg( \expval{\comm*{\comm*{\hat{H}_\mathrm{int}}{\hat{c}_\nu}}{\hat{c}_{\nu'}^\dagger}_{\mp}}
+ - \sum_{\nu''} u_{\nu \nu''} \expval{\comm*{\hat{c}_{\nu''}}{\hat{c}_{\nu'}^\dagger}_{\mp}} \bigg)
+ \\
+ &= \delta_{\nu \nu'} \delta(t \!-\! t')
+ + \frac{i}{\hbar} \Theta(t \!-\! t') \expval{\comm*{\comm*{\hat{H}_\mathrm{int}}{\hat{c}_\nu}}{\hat{c}_{\nu'}^\dagger}_{\mp}}
+ + \sum_{\nu''} u_{\nu \nu''} G_{\nu''\nu'}^R(t, t')
+\end{aligned}$$
+
+Rearranging this as follows yields the main result
+of equation-of-motion theory:
+
+$$\begin{aligned}
+ \boxed{
+ \sum_{\nu''} \Big( i \hbar \delta_{\nu \nu''} \pdv{}{t} - u_{\nu \nu''} \Big) G^R_{\nu'' \nu'}(t, t')
+ = \delta_{\nu \nu'} \delta(t \!-\! t') + D_{\nu \nu'}^R(t, t')
+ }
+\end{aligned}$$
+
+Where $D_{\nu \nu'}^R$ represents a correction due to interactions $\hat{H}_\mathrm{int}$,
+and also has the form of a retarded Green's function,
+but with $\hat{c}_{\nu}$ replaced by $\comm*{-\hat{H}_\mathrm{int}}{\hat{c}_\nu}$:
+
+$$\begin{aligned}
+ \boxed{
+ D^R_{\nu'' \nu'}(t, t')
+ \equiv - \frac{i}{\hbar} \Theta(t \!-\! t') \expval{\comm*{\comm*{-\hat{H}_\mathrm{int}(t)}{\hat{c}_\nu(t)}}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}
+ }
+\end{aligned}$$
+
+Unfortunately, calculating $D_{\nu \nu'}^R$
+might still not be doable due to $\hat{H}_\mathrm{int}$.
+The key idea of equation-of-motion theory is to either approximate $D_{\nu \nu'}^R$ now,
+or to differentiate it again $i \hbar \dv*{D_{\nu \nu'}^R}{t}$,
+and try again for the resulting corrections,
+until a solvable equation is found.
+There is no guarantee that that will ever happen;
+if not, one of the corrections needs to be approximated.
+
+For non-interacting particles $\hat{H}_\mathrm{int} = 0$,
+so clearly $D_{\nu \nu'}^R$ trivially vanishes then.
+Let us assume that $\hat{H}_0$ is also time-independent,
+such that $G_{\nu'' \nu'}^R$ only depends on the difference $t - t'$:
+
+$$\begin{aligned}
+ \sum_{\nu''} \Big( i \hbar \delta_{\nu \nu''} \pdv{}{t} - u_{\nu \nu''} \Big) G^R_{\nu'' \nu'}(t - t')
+ = \delta_{\nu \nu'} \delta(t - t')
+\end{aligned}$$
+
+We take the [Fourier transform](/know/concept/fourier-transform/)
+$(t \!-\! t') \to (\omega + i \eta)$, where $\eta \to 0^+$ ensures convergence:
+
+$$\begin{aligned}
+ \sum_{\nu''} \Big( \hbar \delta_{\nu \nu''} (\omega + i \eta) - u_{\nu \nu''} \Big) G^R_{\nu'' \nu'}(\omega)
+ = \delta_{\nu \nu'}
+\end{aligned}$$
+
+If we assume a diagonal basis $u_{\nu \nu''} = \varepsilon_\nu \delta_{\nu \nu''}$,
+this reduces to the following:
+
+$$\begin{aligned}
+ \delta_{\nu \nu'}
+ &= \sum_{\nu''} \Big( \hbar \delta_{\nu \nu''} (\omega + i \eta) - \varepsilon_\nu \delta_{\nu \nu''} \Big) G^R_{\nu'' \nu'}(\omega)
+ \\
+ &= \Big( \hbar (\omega + i \eta) - \varepsilon_\nu \Big) G^R_{\nu \nu'}(\omega)
+\end{aligned}$$
+
+For a non-interacting, time-independent Hamiltonian,
+we therefore arrive at:
+
+$$\begin{aligned}
+ \boxed{
+ G^R_{\nu \nu'}(\omega)
+ = \frac{\delta_{\nu \nu'}}{\hbar (\omega + i \eta) - \varepsilon_\nu}
+ }
+\end{aligned}$$
+
+
+
+## References
+1. H. Bruus, K. Flensberg,
+ *Many-body quantum theory in condensed matter physics*,
+ 2016, Oxford.