diff options
Diffstat (limited to 'content/know/concept/fermi-dirac-distribution/index.pdc')
-rw-r--r-- | content/know/concept/fermi-dirac-distribution/index.pdc | 86 |
1 files changed, 86 insertions, 0 deletions
diff --git a/content/know/concept/fermi-dirac-distribution/index.pdc b/content/know/concept/fermi-dirac-distribution/index.pdc new file mode 100644 index 0000000..8820cbb --- /dev/null +++ b/content/know/concept/fermi-dirac-distribution/index.pdc @@ -0,0 +1,86 @@ +--- +title: "Fermi-Dirac distribution" +firstLetter: "F" +publishDate: 2021-07-11 +categories: +- Physics +- Statistics +- Quantum mechanics + +date: 2021-07-11T18:22:37+02:00 +draft: false +markup: pandoc +--- + +# Fermi-Dirac distribution + +**Fermi-Dirac statistics** describe how identical **fermions**, +which obey the [Pauli exclusion principle](/know/concept/pauli-exclusion-principle/), +will distribute themselves across the available states in a system at equilibrium. + +Consider one single-particle state $s$, +which can contain $0$ or $1$ fermions. +Because the occupation number $N_s$ is variable, +we turn to the [grand canonical ensemble](/know/concept/grand-canonical-ensemble/), +whose grand partition function $\mathcal{Z}_s$ is as follows, +where we sum over all microstates of $s$: + +$$\begin{aligned} + \mathcal{Z}_s + = \sum_{N_s = 0}^1 \exp\!(- \beta N_s (\varepsilon_s - \mu)) + = 1 + \exp\!(- \beta (\varepsilon_s - \mu)) +\end{aligned}$$ + +Where $\mu$ is the chemical potential, +and $\varepsilon_s$ is the energy contribution per particle in $s$, +i.e. the total energy of all particles $E_s = \varepsilon_s N_s$. + +The corresponding [thermodynamic potential](/know/concept/thermodynamic-potential/) +is the Landau potential $\Omega_s$, given by: + +$$\begin{aligned} + \Omega_s + = - k T \ln{\mathcal{Z}_s} + = - k T \ln\!\Big( 1 + \exp\!(- \beta (\varepsilon_s - \mu)) \Big) +\end{aligned}$$ + +The average number of particles $\expval{N_s}$ +in state $s$ is then found to be as follows: + +$$\begin{aligned} + \expval{N_s} + = - \pdv{\Omega_s}{\mu} + = k T \pdv{\ln{\mathcal{Z}_s}}{\mu} + = \frac{\exp\!(- \beta (\varepsilon_s - \mu))}{1 + \exp\!(- \beta (\varepsilon_s - \mu))} +\end{aligned}$$ + +By multiplying both the numerator and the denominator by $\exp\!(\beta (\varepsilon_s \!-\! \mu))$, +we arrive at the standard form of +the **Fermi-Dirac distribution** or **Fermi function** $f_F$: + +$$\begin{aligned} + \boxed{ + \expval{N_s} + = f_F(\varepsilon_s) + = \frac{1}{\exp\!(\beta (\varepsilon_s - \mu)) + 1} + } +\end{aligned}$$ + +This tells the expected occupation number $\expval{N_s}$ of state $s$, +given a temperature $T$ and chemical potential $\mu$. +The corresponding variance $\sigma_s^2$ of $N_s$ is found to be: + +$$\begin{aligned} + \boxed{ + \sigma_s^2 + = k T \pdv{\expval{N_s}}{\mu} + = \expval{N_s} \big(1 - \expval{N_s}\big) + } +\end{aligned}$$ + + + +## References +1. H. Gould, J. Tobochnik, + *Statistical and thermal physics*, 2nd edition, + Princeton. |