diff options
Diffstat (limited to 'content/know/concept/fourier-transform/index.pdc')
-rw-r--r-- | content/know/concept/fourier-transform/index.pdc | 117 |
1 files changed, 117 insertions, 0 deletions
diff --git a/content/know/concept/fourier-transform/index.pdc b/content/know/concept/fourier-transform/index.pdc new file mode 100644 index 0000000..6d8901a --- /dev/null +++ b/content/know/concept/fourier-transform/index.pdc @@ -0,0 +1,117 @@ +--- +title: "Fourier transform" +firstLetter: "F" +publishDate: 2021-02-22 +categories: +- Mathematics +- Physics + +date: 2021-02-22T21:35:54+01:00 +draft: false +markup: pandoc +--- + +# Fourier transform + +The **Fourier transform** (FT) is an integral transform which converts a +function $f(x)$ into its frequency representation $\tilde{f}(k)$. +Great volumes have already been written about this subject, +so let us focus on the aspects that are useful to physicists. + +The **forward** FT is defined as follows, where $A$, $B$, and $s$ are unspecified constants +(for now): + +$$\begin{aligned} + \boxed{ + \tilde{f}(k) + = \hat{\mathcal{F}}\{f(x)\} + = A \int_{-\infty}^\infty f(x) \exp(i s k x) \dd{x} + } +\end{aligned}$$ + +The **inverse Fourier transform** (iFT) undoes the forward FT operation: + +$$\begin{aligned} + \boxed{ + f(x) + = \hat{\mathcal{F}}^{-1}\{\tilde{f}(k)\} + = B \int_{-\infty}^\infty \tilde{f}(k) \exp(- i s k x) \dd{k} + } +\end{aligned}$$ + +Clearly, the inverse FT of the forward FT of $f(x)$ must equal $f(x)$ +again. Let us verify this, by rearranging the integrals to get the +[Dirac delta function](/know/concept/dirac-delta-function/) $\delta(x)$: + +$$\begin{aligned} + \hat{\mathcal{F}}^{-1}\{\hat{\mathcal{F}}\{f(x)\}\} + &= A B \int_{-\infty}^\infty \exp(-i s k x) \int_{-\infty}^\infty f(x') \exp(i s k x') \dd{x'} \dd{k} + \\ + &= 2 \pi A B \int_{-\infty}^\infty f(x') \Big(\frac{1}{2\pi} \int_{-\infty}^\infty \exp(i s k (x' - x)) \dd{k} \Big) \dd{x'} + \\ + &= 2 \pi A B \int_{-\infty}^\infty f(x') \: \delta(s(x' - x)) \dd{x'} + = \frac{2 \pi A B}{|s|} f(x) +\end{aligned}$$ + +Therefore, the constants $A$, $B$, and $s$ are subject to the following +constraint: + +$$\begin{aligned} + \boxed{\frac{2\pi A B}{|s|} = 1} +\end{aligned}$$ + +But that still gives a lot of freedom. The exact choices of $A$ and $B$ +are generally motivated by the [convolution theorem](/know/concept/convolution-theorem/) +and [Parseval's theorem](/know/concept/parsevals-theorem/). + +The choice of $|s|$ depends on whether the frequency variable $k$ +represents the angular ($|s| = 1$) or the physical ($|s| = 2\pi$) +frequency. The sign of $s$ is not so important, but is generally based +on whether the analysis is for forward ($s > 0$) or backward-propagating +($s < 0$) waves. + + +## Derivatives + +The FT of a derivative has a very interesting property. +Below, after integrating by parts, we remove the boundary term by +assuming that $f(x)$ is localized, i.e. $f(x) \to 0$ for $x \to \pm \infty$: + +$$\begin{aligned} + \hat{\mathcal{F}}\{f'(x)\} + &= A \int_{-\infty}^\infty f'(x) \exp(i s k x) \dd{x} + \\ + &= A \big[ f(x) \exp(i s k x) \big]_{-\infty}^\infty - i s k A \int_{-\infty}^\infty f(x) \exp(i s k x) \dd{x} + \\ + &= (- i s k) \tilde{f}(k) +\end{aligned}$$ + +Therefore, as long as $f(x)$ is localized, the FT eliminates derivatives +of the transformed variable, which makes it useful against PDEs: + +$$\begin{aligned} + \boxed{ + \hat{\mathcal{F}}\{f'(x)\} = (- i s k) \tilde{f}(k) + } +\end{aligned}$$ + +This generalizes to higher-order derivatives, as long as these +derivatives are also localized in the $x$-domain, which is practically +guaranteed if $f(x)$ itself is localized: + +$$\begin{aligned} + \boxed{ + \hat{\mathcal{F}} \Big\{ \dv[n]{f}{x} \Big\} + = (- i s k)^n \tilde{f}(k) + } +\end{aligned}$$ + +Derivatives in the frequency domain have an analogous property: + +$$\begin{aligned} + \boxed{ + \dv[n]{\tilde{f}}{k} + = A \int_{-\infty}^\infty (i s x)^n f(x) \exp(i s k x) \dd{x} + = \hat{\mathcal{F}}\{ (i s x)^n f(x) \} + } +\end{aligned}$$ |