diff options
Diffstat (limited to 'content/know/concept/larmor-precession/index.pdc')
-rw-r--r-- | content/know/concept/larmor-precession/index.pdc | 108 |
1 files changed, 108 insertions, 0 deletions
diff --git a/content/know/concept/larmor-precession/index.pdc b/content/know/concept/larmor-precession/index.pdc new file mode 100644 index 0000000..3affdee --- /dev/null +++ b/content/know/concept/larmor-precession/index.pdc @@ -0,0 +1,108 @@ +--- +title: "Larmor precession" +firstLetter: "L" +publishDate: 2021-07-02 +categories: +- Physics +- Quantum mechanics + +date: 2021-07-02T15:48:41+02:00 +draft: false +markup: pandoc +--- + +# Larmor precession + +Consider a stationary spin-1/2 particle, +placed in a [magnetic field](/know/concept/magnetic-field/) +with magnitude $B$ pointing in the $z$-direction. +In that case, its Hamiltonian $\hat{H}$ is given by: + +$$\begin{aligned} + \hat{H} = - \gamma B \hat{S}_z = - \frac{\hbar}{2} \gamma B \hat{\sigma_z} +\end{aligned}$$ + +Where $\gamma = - q / m$ is the gyromagnetic ratio, +and $\hat{\sigma}_z$ is the Pauli spin matrix for the $z$-direction. +Since $\hat{H}$ is proportional to $\hat{\sigma}_z$, +they share eigenstates $\ket{\downarrow}$ and $\ket{\uparrow}$. +The respective eigenenergies $E_{\downarrow}$ and $E_{\uparrow}$ are as follows: + +$$\begin{aligned} + E_{\downarrow} = \frac{\hbar}{2} \gamma B + \qquad + E_{\uparrow} = - \frac{\hbar}{2} \gamma B +\end{aligned}$$ + +Because $\hat{H}$ is time-independent, +the general time-dependent solution $\ket{\chi(t)}$ is of the following form, +where $a$ and $b$ are constants, +and the exponentials are "twiddle factors": + +$$\begin{aligned} + \ket{\chi(t)} + = a \exp\!(- i E_{\downarrow} t / \hbar) \: \ket{\downarrow} + \:+\: b \exp\!(- i E_{\uparrow} t / \hbar) \: \ket{\uparrow} +\end{aligned}$$ + +For our purposes, we can safely assume that $a$ and $b$ are real, +and then say that there exists an angle $\theta$ +satisfying $a = \sin\!(\theta / 2)$ and $b = \cos\!(\theta / 2)$, such that: + +$$\begin{aligned} + \ket{\chi(t)} = \sin\!(\theta / 2) \exp\!(- i E_{\downarrow} t / \hbar) \: \ket{\downarrow} + \:+\: \cos\!(\theta / 2) \exp\!(- i E_{\uparrow} t / \hbar) \: \ket{\uparrow} +\end{aligned}$$ + +Now, we find the expectation values of the spin operators +$\expval*{\hat{S}_x}$, $\expval*{\hat{S}_y}$, and $\expval*{\hat{S}_z}$. +The first is: + +$$\begin{aligned} + \matrixel{\chi}{\hat{S}_x}{\chi} + &= \frac{\hbar}{2} + \begin{bmatrix} a \exp\!(i E_{\downarrow} t / \hbar) \\ b \exp\!(i E_{\uparrow} t / \hbar) \end{bmatrix}^{\mathrm{T}} + \cdot + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \cdot + \begin{bmatrix} a \exp\!(- i E_{\downarrow} t / \hbar) \\ b \exp\!(- i E_{\uparrow} t / \hbar) \end{bmatrix} + \\ + &= \frac{\hbar}{2} + \begin{bmatrix} a \exp\!(i E_{\downarrow} t / \hbar) \\ b \exp\!(i E_{\uparrow} t / \hbar) \end{bmatrix}^{\mathrm{T}} + \cdot + \begin{bmatrix} b \exp\!(- i E_{\uparrow} t / \hbar) \\ a \exp\!(- i E_{\downarrow} t / \hbar) \end{bmatrix} + \\ + &= \frac{\hbar}{2} \Big( a b \exp\!(i (E_{\downarrow} \!-\! E_{\uparrow}) t / \hbar) + + b a \exp\!(i (E_{\uparrow} \!-\! E_{\downarrow}) t / \hbar) \Big) + \\ + &= \frac{\hbar}{2} \cos\!(\theta/2) \sin\!(\theta/2) \Big( \exp\!(i \gamma B t) + \exp\!(- i \gamma B t) \Big) + \\ + &= \frac{\hbar}{2} \cos\!(\gamma B t) \Big( \cos\!(\theta/2) \sin\!(\theta/2) + \cos\!(\theta/2) \sin\!(\theta/2) \Big) + \\ + &= \frac{\hbar}{2} \sin\!(\theta) \cos\!(\gamma B t) +\end{aligned}$$ + +The other two are calculated in the same way, +with the following results: + +$$\begin{aligned} + \matrixel{\chi}{\hat{S}_y}{\chi} = - \frac{\hbar}{2} \sin\!(\theta) \sin\!(\gamma B t) + \qquad + \matrixel{\chi}{\hat{S}_z}{\chi} = \frac{\hbar}{2} \cos\!(\theta) +\end{aligned}$$ + +The result is that the spin axis is off by $\theta$ from the $z$-direction, +and is rotating (or **precessing**) around the $z$-axis at the **Larmor frequency** $\omega$: + +$$\begin{aligned} + \boxed{ + \omega = \gamma B + } +\end{aligned}$$ + + + +## References +1. D.J. Griffiths, D.F. Schroeter, + *Introduction to quantum mechanics*, 3rd edition, + Cambridge. |