summaryrefslogtreecommitdiff
path: root/content/know/concept/material-derivative
diff options
context:
space:
mode:
Diffstat (limited to 'content/know/concept/material-derivative')
-rw-r--r--content/know/concept/material-derivative/index.pdc8
1 files changed, 4 insertions, 4 deletions
diff --git a/content/know/concept/material-derivative/index.pdc b/content/know/concept/material-derivative/index.pdc
index af65ca0..1c6bfdc 100644
--- a/content/know/concept/material-derivative/index.pdc
+++ b/content/know/concept/material-derivative/index.pdc
@@ -57,7 +57,7 @@ then we can rewrite this expression like so:
$$\begin{aligned}
\dv{t} f\big(x(t), y(t), z(t), t\big)
- &= \pdv{f}{t} + \va{v} \cdot \nabla f
+ &= \pdv{f}{t} + (\va{v} \cdot \nabla) f
\end{aligned}$$
Note that $\va{v} = \va{v}(\va{r}, t)$,
@@ -73,7 +73,7 @@ and is known as the **material derivative** or **comoving derivative**:
$$\begin{aligned}
\boxed{
\frac{\mathrm{D}f}{\mathrm{D}t}
- \equiv \pdv{f}{t} + \va{v} \cdot \nabla f
+ \equiv \pdv{f}{t} + (\va{v} \cdot \nabla) f
}
\end{aligned}$$
@@ -89,14 +89,14 @@ but in fact the definition also works for vector fields $\va{U}(\va{r}, t)$:
$$\begin{aligned}
\boxed{
\frac{\mathrm{D} \va{U}}{\mathrm{D}t}
- \equiv \pdv{f}{t} + \va{v} \cdot \nabla \va{U}
+ \equiv \pdv{\va{U}}{t} + (\va{v} \cdot \nabla) \va{U}
}
\end{aligned}$$
Where the advective term is to be evaluated in the following way in Cartesian coordinates:
$$\begin{aligned}
- \va{v} \cdot \nabla \va{U}
+ (\va{v} \cdot \nabla) \va{U}
=
\begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}
\cdot