summaryrefslogtreecommitdiff
path: root/content/know/concept/two-fluid-equations
diff options
context:
space:
mode:
Diffstat (limited to 'content/know/concept/two-fluid-equations')
-rw-r--r--content/know/concept/two-fluid-equations/index.pdc101
1 files changed, 93 insertions, 8 deletions
diff --git a/content/know/concept/two-fluid-equations/index.pdc b/content/know/concept/two-fluid-equations/index.pdc
index cd77f5e..df45e73 100644
--- a/content/know/concept/two-fluid-equations/index.pdc
+++ b/content/know/concept/two-fluid-equations/index.pdc
@@ -32,10 +32,9 @@ $$\begin{aligned}
From here, the derivation is similar to that of the
[Navier-Stokes equations](/know/concept/navier-stokes-equations/).
-We replace the time derivative with a
+We replace $\dv*{t}$ with a
[material derivative](/know/concept/material-derivative/) $\mathrm{D}/\mathrm{D}t$,
-and define a blob's velocity $\vb{u}$
-as the average velocity of the particles inside it, leading to:
+and define $\vb{u}$ as the blob's center-of-mass velocity:
$$\begin{aligned}
m n \frac{\mathrm{D} \vb{u}}{\mathrm{D} t}
@@ -134,7 +133,7 @@ of a gas with constant heat capacities (i.e. a *calorically perfect* gas),
it turns out that:
$$\begin{aligned}
- \dv{t} \big( p V^\gamma \big) = 0
+ \frac{\mathrm{D}}{\mathrm{D} t} \big( p V^\gamma \big) = 0
\qquad \quad
\gamma
\equiv \frac{C_P}{C_V}
@@ -148,10 +147,10 @@ In a fully ionized plasma, $N = 3$.
The density $n \propto 1/V$,
so since $p V^\gamma$ is constant in time,
-for some (known) constant $C$:
+for some constant $C$:
$$\begin{aligned}
- \dv{t} \Big( \frac{p}{n^\gamma} \Big) = 0
+ \frac{\mathrm{D}}{\mathrm{D} t} \Big( \frac{p}{n^\gamma} \Big) = 0
\quad \implies \quad
p = C n^\gamma
\end{aligned}$$
@@ -161,13 +160,99 @@ giving us a set of 16 equations for 16 unknowns:
$$\begin{aligned}
\boxed{
- p_i = C_i n_i^\gamma
+ \frac{\mathrm{D}}{\mathrm{D} t} \Big( \frac{p_i}{n_i^\gamma} \Big)
+ = 0
\qquad \quad
- p_e = C_e n_e^\gamma
+ \frac{\mathrm{D}}{\mathrm{D} t} \Big( \frac{p_e}{n_e^\gamma} \Big)
+ = 0
}
\end{aligned}$$
+## Fluid drifts
+
+The momentum equations reduce to the following
+if we assume the flow is steady $\pdv*{\vb{u}}{t} = 0$,
+and neglect electron-ion momentum transfer on the right:
+
+$$\begin{aligned}
+ m_i n_i (\vb{u}_i \cdot \nabla) \vb{u}_i
+ &\approx q_i n_i (\vb{E} + \vb{u}_i \cross \vb{B}) - \nabla p_i
+ \\
+ m_e n_e (\vb{u}_e \cdot \nabla) \vb{u}_e
+ &\approx q_e n_e (\vb{E} + \vb{u}_e \cross \vb{B}) - \nabla p_e
+\end{aligned}$$
+
+We take the cross product with $\vb{B}$,
+which leaves only the component $\vb{u}_\perp$ of $\vb{u}$
+perpendicular to $\vb{B}$ in the Lorentz term:
+
+$$\begin{aligned}
+ 0
+ &= q n (\vb{E} + \vb{u}_\perp \cross \vb{B}) \cross \vb{B} - \nabla p \cross \vb{B} - m n \big( (\vb{u} \cdot \nabla) \vb{u} \big) \cross \vb{B}
+ \\
+ &= q n (\vb{E} \cross \vb{B} - \vb{u}_\perp B^2) - \nabla p \cross \vb{B} - m n \big( (\vb{u} \cdot \nabla) \vb{u} \big) \cross \vb{B}
+\end{aligned}$$
+
+Isolating for $\vb{u}_\perp$ tells us
+that the fluids drifts perpendicularly to $\vb{B}$,
+with velocity $\vb{u}_\perp$:
+
+$$\begin{aligned}
+ \vb{u}_\perp
+ = \frac{\vb{E} \cross \vb{B}}{B^2} - \frac{\nabla p \cross \vb{B}}{q n B^2}
+ - \frac{m \big( (\vb{u} \cdot \nabla) \vb{u} \big) \cross \vb{B}}{q B^2}
+\end{aligned}$$
+
+The last term is often neglected,
+which turns out to be a valid approximation if $\vb{E} = 0$,
+or if $\vb{E}$ is parallel to $\nabla p$.
+The first term is the familiar $\vb{E} \cross \vb{B}$ drift $\vb{v}_E$
+from [guiding center theory](/know/concept/guiding-center-theory/),
+and the second term is called the **diamagnetic drift** $\vb{v}_D$:
+
+$$\begin{aligned}
+ \boxed{
+ \vb{v}_E
+ = \frac{\vb{E} \cross \vb{B}}{B^2}
+ }
+ \qquad \quad
+ \boxed{
+ \vb{v}_D
+ = - \frac{\nabla p \cross \vb{B}}{q n B^2}
+ }
+\end{aligned}$$
+
+It is called *diamagnetic* because
+it creates a current that induces
+a magnetic field opposite to the original $\vb{B}$.
+In a quasi-neutral plasma $q_e n_e = - q_i n_i$,
+the current density $\vb{J}$ is given by:
+
+$$\begin{aligned}
+ \vb{J}
+ = q_e n_e (\vb{v}_{De} - \vb{v}_{Di})
+ = q_e n_e \Big( \frac{\nabla p_i \cross \vb{B}}{q_i n_i B^2} - \frac{\nabla p_e \cross \vb{B}}{q_e n_e B^2} \Big)
+ = \frac{\vb{B} \cross \nabla (p_i + p_e)}{B^2}
+\end{aligned}$$
+
+Using the ideal gas law $p = k_B T n$,
+this can be rewritten as follows:
+
+$$\begin{aligned}
+ \vb{J}
+ = k_B \frac{\vb{B} \cross \nabla (T_i n_i + T_e n_e)}{B^2}
+\end{aligned}$$
+
+Curiously, $\vb{v}_D$ does not involve any net movement of particles,
+because a pressure gradient does not necessarily cause particles to move.
+Instead, there is a higher density of gyration paths
+in the high-pressure region,
+so that the particle flux through a reference plane is higher.
+This causes the fluid elements to drift,
+but not the guiding centers.
+
+
## References
1. F.F. Chen,