summaryrefslogtreecommitdiff
path: root/content/know/concept/alfven-waves/index.pdc
blob: ba87bee139b8ff780a3ae0490aebc292814bfd1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
---
title: "Alfvén waves"
firstLetter: "A"
publishDate: 2022-01-31
categories:
- Physics
- Plasma physics
- Plasma waves

date: 2022-01-30T19:26:33+01:00
draft: false
markup: pandoc
---

# Alfvén waves

In the [magnetohydrodynamic](/know/concept/magnetohydrodynamics/) description of a plasma,
we split the velocity $\vb{u}$, electric current $\vb{J}$,
[magnetic field](/know/concept/magnetic-field/) $\vb{B}$
and [electric field](/know/concept/electric-field/) $\vb{E}$ like so,
into a constant uniform equilibrium (subscript $0$)
and a small unknown perturbation (subscript $1$):

$$\begin{aligned}
    \vb{u}
    = \vb{u}_0 + \vb{u}_1
    \qquad
    \vb{J}
    = \vb{J}_0 + \vb{J}_1
    \qquad
    \vb{B}
    = \vb{B}_0 + \vb{B}_1
    \qquad
    \vb{E}
    = \vb{E}_0 + \vb{E}_1
\end{aligned}$$

Inserting this decomposition into the ideal form of the generalized Ohm's law
and keeping only terms that are first-order in the perturbation, we get:

$$\begin{aligned}
    0
    &= (\vb{E}_0 + \vb{E}_1) + (\vb{u}_0 + \vb{u}_1) \cross (\vb{B}_0 + \vb{B}_1)
    \\
    &= \vb{E}_1 + \vb{u}_1 \cross \vb{B}_0
\end{aligned}$$

We do this for the momentum equation too,
assuming that $\vb{J}_0 \!=\! 0$ (to be justified later).
Note that the temperature is set to zero, such that the pressure vanishes:

$$\begin{aligned}
    \rho \pdv{\vb{u}_1}{t}
    = \vb{J}_1 \cross \vb{B}_0
\end{aligned}$$

Where $\rho$ is the uniform equilibrium density.
We would like an equation for $\vb{J}_1$,
which is provided by the magnetohydrodynamic form of Ampère's law:

$$\begin{aligned}
    \nabla \cross \vb{B}_1
    = \mu_0 \vb{J}_1
    \qquad \implies \quad
    \vb{J}_1
    = \frac{1}{\mu_0} \nabla \cross \vb{B}_1
\end{aligned}$$

Substituting this into the momentum equation,
and differentiating with respect to $t$:

$$\begin{aligned}
    \rho \pdv[2]{\vb{u}_1}{t}
    = \frac{1}{\mu_0} \bigg( \Big( \nabla \cross \pdv{\vb{B}_1}{t} \Big) \cross \vb{B}_0 \bigg)
\end{aligned}$$

For which we can use Faraday's law to rewrite $\pdv*{\vb{B}_1}{t}$,
incorporating Ohm's law too:

$$\begin{aligned}
    \pdv{\vb{B}_1}{t}
    = - \nabla \cross \vb{E}_1
    = \nabla \cross (\vb{u}_1 \cross \vb{B}_0)
\end{aligned}$$

Inserting this into the momentum equation for $\vb{u}_1$
thus yields its final form:

$$\begin{aligned}
    \rho \pdv[2]{\vb{u}_1}{t}
    = \frac{1}{\mu_0} \bigg( \Big( \nabla \cross \big( \nabla \cross (\vb{u}_1 \cross \vb{B}_0) \big) \Big) \cross \vb{B}_0 \bigg)
\end{aligned}$$

Suppose the magnetic field is pointing in $z$-direction,
i.e. $\vb{B}_0 = B_0 \vu{e}_z$.
Then Faraday's law justifies our earlier assumption that $\vb{J}_0 = 0$,
and the equation can be written as:

$$\begin{aligned}
    \pdv[2]{\vb{u}_1}{t}
    = v_A^2 \bigg( \Big( \nabla \cross \big( \nabla \cross (\vb{u}_1 \cross \vu{e}_z) \big) \Big) \cross \vu{e}_z \bigg)
\end{aligned}$$

Where we have defined the so-called **Alfvén velocity** $v_A$ to be given by:

$$\begin{aligned}
    \boxed{
        v_A
        \equiv \sqrt{\frac{B_0^2}{\mu_0 \rho}}
    }
\end{aligned}$$

Now, consider the following plane-wave ansatz for $\vb{u}_1$,
with wavevector $\vb{k}$ and frequency $\omega$:

$$\begin{aligned}
    \vb{u}_1(\vb{r}, t)
    &= \vb{u}_1 \exp\!(i \vb{k} \cdot \vb{r} - i \omega t)
\end{aligned}$$

Inserting this into the above differential equation for $\vb{u}_1$ leads to:

$$\begin{aligned}
    \omega^2 \vb{u}_1
    = v_A^2 \bigg( \Big( \vb{k} \cross \big( \vb{k} \cross (\vb{u}_1 \cross \vu{e}_z) \big) \Big) \cross \vu{e}_z \bigg)
\end{aligned}$$

To evaluate this, we rotate our coordinate system around the $z$-axis
such that $\vb{k} = (0, k_\perp, k_\parallel)$,
i.e. the wavevector's $x$-component is zero.
Calculating the cross products:

$$\begin{aligned}
    \omega^2 \vb{u}_1
    &= v_A^2 \bigg( \Big( \begin{bmatrix} 0 \\ k_\perp \\ k_\parallel \end{bmatrix}
    \cross \big( \begin{bmatrix} 0 \\ k_\perp \\ k_\parallel \end{bmatrix}
    \cross ( \begin{bmatrix} u_{1x} \\ u_{1y} \\ u_{1z} \end{bmatrix}
    \cross \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} ) \big) \Big)
    \cross \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \bigg)
    \\
    &= v_A^2 \bigg( \Big( \begin{bmatrix} 0 \\ k_\perp \\ k_\parallel \end{bmatrix}
    \cross \big( \begin{bmatrix} 0 \\ k_\perp \\ k_\parallel \end{bmatrix}
    \cross \begin{bmatrix} u_{1y} \\ -u_{1x} \\ 0 \end{bmatrix} \big) \Big)
    \cross \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \bigg)
    \\
    &= v_A^2 \bigg( \Big( \begin{bmatrix} 0 \\ k_\perp \\ k_\parallel \end{bmatrix}
    \cross \begin{bmatrix} k_\parallel u_{1x} \\ k_\parallel u_{1y} \\ -k_\perp u_{1y} \end{bmatrix} \Big)
    \cross \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \bigg)
    \\
    &= v_A^2 \bigg( \begin{bmatrix} -(k_\perp^2 \!+ k_\parallel^2) u_{1y} \\ k_\parallel^2 u_{1x} \\ -k_\perp k_\parallel u_{1x} \end{bmatrix}
    \cross \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \bigg)
    \\
    &= v_A^2 \begin{bmatrix} k_\parallel^2 u_{1x} \\ (k_\perp^2 \!+ k_\parallel^2) u_{1y} \\ 0 \end{bmatrix}
\end{aligned}$$

We rewrite this equation in matrix form,
using that $k_\perp^2 \!+ k_\parallel^2 = k^2 \equiv |\vb{k}|^2$:

$$\begin{aligned}
    \begin{bmatrix}
        \omega^2 - v_A^2 k_\parallel^2 & 0 & 0 \\
        0 & \omega^2 - v_A^2 k^2 & 0 \\
        0 & 0 & \omega^2
    \end{bmatrix}
    \vb{u}_1
    = 0
\end{aligned}$$

This has the form of an eigenvalue problem for $\omega^2$,
meaning we must find non-trivial solutions,
where we cannot simply choose the components of $\vb{u}_1$ to satisfy the equation.
To achieve this, we demand that the matrix' determinant is zero:

$$\begin{aligned}
    \big(\omega^2 - v_A^2 k_\parallel^2\big) \: \big(\omega^2 - v_A^2 k^2\big) \: \omega^2
    = 0
\end{aligned}$$

This equation has three solutions for $\omega^2$,
one for each of its three factors being zero.
The simplest case $\omega^2 = 0$ is of no interest to us,
because we are looking for waves.

The first interesting case is $\omega^2 = v_A^2 k_\parallel^2$,
yielding the following dispersion relation:

$$\begin{aligned}
    \boxed{
        \omega
        = \pm v_A k_\parallel
    }
\end{aligned}$$

The resulting waves are called **shear Alfvén waves**.
From the eigenvalue problem, we see that in this case
$\vb{u}_1 = (u_{1x}, 0, 0)$, meaning $\vb{u}_1 \cdot \vb{k} = 0$:
these waves are **transverse**.
The phase velocity $v_p$ and group velocity $v_g$ are as follows,
where $\theta$ is the angle between $\vb{k}$ and $\vb{B}_0$:

$$\begin{aligned}
    v_p
    = \frac{|\omega|}{k}
    = v_A \frac{k_\parallel}{k}
    = v_A \cos\!(\theta)
    \qquad \qquad
    v_g
    = \pdv{|\omega|}{k}
    = v_A
\end{aligned}$$

The other interesting case is $\omega^2 = v_A^2 k^2$,
which leads to so-called **compressional Alfvén waves**,
with the simple dispersion relation:

$$\begin{aligned}
    \boxed{
        \omega
        = \pm v_A k
    }
\end{aligned}$$

Looking at the eigenvalue problem reveals that $\vb{u}_1 = (0, u_{1y}, 0)$,
meaning $\vb{u}_1 \cdot \vb{k} = u_{1y} k_\perp$,
so these waves are not necessarily transverse, nor longitudinal (since $k_\parallel$ is free).
The phase velocity $v_p$ and group velocity $v_g$ are given by:

$$\begin{aligned}
    v_p
    = \frac{|\omega|}{k}
    = v_A
    \qquad \qquad
    v_g
    = \pdv{|\omega|}{k}
    = v_A
\end{aligned}$$

The mechanism behind both of these oscillations is magnetic tension:
the waves are "ripples" in the field lines,
which get straightened out by Faraday's law,
but the ions' inertia causes them to overshoot and form ripples again.



## References
1.  M. Salewski, A.H. Nielsen,
    *Plasma physics: lecture notes*,
    2021, unpublished.