1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
---
title: "Bose-Einstein distribution"
firstLetter: "B"
publishDate: 2021-07-11
categories:
- Physics
- Statistics
- Quantum mechanics
date: 2021-07-11T18:22:44+02:00
draft: false
markup: pandoc
---
# Bose-Einstein statistics
**Bose-Einstein statistics** describe how bosons,
which do not obey the [Pauli exclusion principle](/know/concept/pauli-exclusion-principle/),
will distribute themselves across the available states
in a system at equilibrium.
Consider a single-particle state $s$,
which can contain any number of bosons.
Since the occupation number $N_s$ is variable,
we turn to the [grand canonical ensemble](/know/concept/grand-canonical-ensemble/),
whose grand partition function $\mathcal{Z_s}$ is as follows,
where $\varepsilon_s$ is the energy per particle,
and $\mu$ is the chemical potential:
$$\begin{aligned}
\mathcal{Z}_s
= \sum_{N_s = 0}^\infty \Big( \exp\!(- \beta (\varepsilon_s - \mu)) \Big)^{N_s}
= \frac{1}{1 - \exp\!(- \beta (\varepsilon_s - \mu))}
\end{aligned}$$
The corresponding [thermodynamic potential](/know/concept/thermodynamic-potential/)
is the Landau potential $\Omega$, given by:
$$\begin{aligned}
\Omega_s
= - k T \ln{\mathcal{Z_s}}
= k T \ln\!\Big( 1 - \exp\!(- \beta (\varepsilon_s - \mu)) \Big)
\end{aligned}$$
The average number of particles $\expval{N_s}$
is found by taking a derivative of $\Omega$:
$$\begin{aligned}
\expval{N_s}
= - \pdv{\Omega_s}{\mu}
= k T \pdv{\ln{\mathcal{Z_s}}}{\mu}
= \frac{\exp\!(- \beta (\varepsilon_s - \mu))}{1 - \exp\!(- \beta (\varepsilon_s - \mu))}
\end{aligned}$$
By multitplying both the numerator and the denominator by $\exp\!(\beta(\epsilon_s \!-\! \mu))$,
we arrive at the standard form of the **Bose-Einstein distribution** $f_B$:
$$\begin{aligned}
\boxed{
\expval{N_s}
= f_B(\varepsilon_s)
= \frac{1}{\exp\!(\beta (\varepsilon_s - \mu)) - 1}
}
\end{aligned}$$
This tells the expected occupation number $\expval{N_s}$ of state $s$,
given a temperature $T$ and chemical potential $\mu$.
The corresponding variance $\sigma_s^2$ of $N_s$ is found to be:
$$\begin{aligned}
\boxed{
\sigma_s^2
= k T \pdv{\expval{N_s}}{\mu}
= \expval{N_s} \big(1 + \expval{N_s}\big)
}
\end{aligned}$$
## References
1. H. Gould, J. Tobochnik,
*Statistical and thermal physics*, 2nd edition,
Princeton.
|