1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
---
title: "Calculus of variations"
firstLetter: "C"
publishDate: 2021-02-24
categories:
- Mathematics
- Physics
date: 2021-02-24T18:50:06+01:00
draft: false
markup: pandoc
---
# Calculus of variations
The **calculus of variations** lays the mathematical groundwork
for Lagrangian mechanics.
Consider a **functional** $J$, mapping a function $f(x)$ to a scalar value
by integrating over the so-called **Lagrangian** $L$,
which represents an expression involving $x$, $f$ and the derivative $f'$:
$$\begin{aligned}
J[f] = \int_{x_0}^{x_1} L(f, f', x) \dd{x}
\end{aligned}$$
If $J$ in some way measures the physical "cost" (e.g. energy) of
the path $f(x)$ taken by a physical system,
the **principle of least action** states that $f$ will be a minimum of $J[f]$,
so for example the expended energy will be minimized.
If $f(x, \varepsilon\!=\!0)$ is the optimal route, then a slightly
different (and therefore worse) path between the same two points can be expressed
using the parameter $\varepsilon$:
$$\begin{aligned}
f(x, \varepsilon) = f(x, 0) + \varepsilon \eta(x)
\qquad \mathrm{or} \qquad
\delta f = \varepsilon \eta(x)
\end{aligned}$$
Where $\eta(x)$ is an arbitrary differentiable deviation.
Since $f(x, \varepsilon)$ must start and end in the same points as $f(x,0)$,
we have the boundary conditions:
$$\begin{aligned}
\eta(x_0) = \eta(x_1) = 0
\end{aligned}$$
Given $L$, the goal is to find an equation for the optimal path $f(x,0)$.
Just like when finding the minimum of a real function,
the minimum $f$ of a functional $J[f]$ is a stationary point
with respect to the deviation weight $\varepsilon$,
a condition often written as $\delta J = 0$.
In the following, the integration limits have been omitted:
$$\begin{aligned}
0
&= \delta J
= \pdv{J}{\varepsilon} \Big|_{\varepsilon = 0}
= \int \pdv{L}{\varepsilon} \dd{x}
= \int \pdv{L}{f} \pdv{f}{\varepsilon} + \pdv{L}{f'} \pdv{f'}{\varepsilon} \dd{x}
\\
&= \int \pdv{L}{f} \eta + \pdv{L}{f'} \eta' \dd{x}
= \Big[ \pdv{L}{f'} \eta \Big]_{x_0}^{x_1} + \int \pdv{L}{f} \eta - \frac{d}{dx} \Big( \pdv{L}{f'} \Big) \eta \dd{x}
\end{aligned}$$
The boundary term from partial integration vanishes due to the boundary
conditions for $\eta(x)$. We are thus left with:
$$\begin{aligned}
0
= \int \eta \bigg( \pdv{L}{f} - \dv{x} \Big( \pdv{L}{f'} \Big) \bigg) \dd{x}
\end{aligned}$$
This holds for all $\eta$, but $\eta$ is arbitrary, so in fact
only the parenthesized expression matters:
$$\begin{aligned}
\boxed{
0 = \pdv{L}{f} - \dv{x} \Big( \pdv{L}{f'} \Big)
}
\end{aligned}$$
This is known as the **Euler-Lagrange equation** of the Lagrangian $L$,
and its solutions represent the optimal paths $f(x, 0)$.
## Multiple functions
Suppose that the Lagrangian $L$ depends on multiple independent functions
$f_1, f_2, ..., f_N$:
$$\begin{aligned}
J[f_1, ..., f_N] = \int_{x_0}^{x_1} L(f_1, ..., f_N, f_1', ..., f_N', x) \dd{x}
\end{aligned}$$
In this case, every $f_n(x)$ has its own deviation $\eta_n(x)$,
satisfying $\eta_n(x_0) = \eta_n(x_1) = 0$:
$$\begin{aligned}
f_n(x, \varepsilon) = f_n(x, 0) + \varepsilon \eta_n(x)
\end{aligned}$$
The derivation procedure is identical to the case $N = 1$ from earlier:
$$\begin{aligned}
0
&= \pdv{J}{\varepsilon} \Big|_{\varepsilon = 0}
= \int \pdv{L}{\varepsilon} \dd{x}
= \int \sum_{n} \Big( \pdv{L}{f_n} \pdv{f_n}{\varepsilon} + \pdv{L}{f_n'} \pdv{f_n'}{\varepsilon} \Big) \dd{x}
\\
&= \int \sum_{n} \Big( \pdv{L}{f_n} \eta_n + \pdv{L}{f_n'} \eta_n' \Big) \dd{x}
\\
&= \Big[ \sum_{n} \pdv{L}{f_n'} \eta_n \Big]_{x_0}^{x_1}
+ \int \sum_{n} \eta_n \bigg( \pdv{L}{f_n} - \frac{d}{dx} \Big( \pdv{L}{f_n'} \Big) \bigg) \dd{x}
\end{aligned}$$
Once again, $\eta_n(x)$ is arbitrary and disappears at the boundaries,
so we end up with $N$ equations of the same form as for a single function:
$$\begin{aligned}
\boxed{
0 = \pdv{L}{f_1} - \dv{x} \Big( \pdv{L}{f_1'} \Big)
\quad \cdots \quad
0 = \pdv{L}{f_N} - \dv{x} \Big( \pdv{L}{f_N'} \Big)
}
\end{aligned}$$
## Higher-order derivatives
Suppose that the Lagrangian $L$ depends on multiple derivatives of $f(x)$:
$$\begin{aligned}
J[f] = \int_{x_0}^{x_1} L(f, f', f'', ..., f^{(N)}, x) \dd{x}
\end{aligned}$$
Once again, the derivation procedure is the same as before:
$$\begin{aligned}
0
&= \pdv{J}{\varepsilon} \Big|_{\varepsilon = 0}
= \int \pdv{L}{\varepsilon} \dd{x}
= \int \pdv{L}{f} \pdv{f}{\varepsilon} + \sum_{n} \pdv{L}{f^{(n)}} \pdv{f^{(n)}}{\varepsilon} \dd{x}
\\
&= \int \pdv{L}{f} \eta + \sum_{n} \pdv{L}{f^{(n)}} \eta^{(n)} \dd{x}
\end{aligned}$$
The goal is to turn each $\eta^{(n)}(x)$ into $\eta(x)$, so we need to
partially integrate the $n$th term of the sum $n$ times. In this case,
we will need some additional boundary conditions for $\eta(x)$:
$$\begin{aligned}
\eta'(x_0) = \eta'(x_1) = 0
\qquad \cdots \qquad
\eta^{(N-1)}(x_0) = \eta^{(N-1)}(x_1) = 0
\end{aligned}$$
This eliminates the boundary terms from partial integration, leaving:
$$\begin{aligned}
0
&= \int \eta \bigg( \pdv{L}{f} + \sum_{n} (-1)^n \dv[n]{x} \Big( \pdv{L}{f^{(n)}} \Big) \bigg) \dd{x}
\end{aligned}$$
Once again, because $\eta(x)$ is arbitrary, the Euler-Lagrange equation becomes:
$$\begin{aligned}
\boxed{
0 = \pdv{L}{f} + \sum_{n} (-1)^n \dv[n]{x} \Big( \pdv{L}{f^{(n)}} \Big)
}
\end{aligned}$$
## Multiple coordinates
Suppose now that $f$ is a function of multiple variables.
For brevity, we only consider two variables $x$ and $y$,
but the results generalize effortlessly to larger amounts.
The Lagrangian now depends on all the partial derivatives of $f(x, y)$:
$$\begin{aligned}
J[f] = \iint_{(x_0, y_0)}^{(x_1, y_1)} L(f, f_x, f_y, x, y) \dd{x} \dd{y}
\end{aligned}$$
The arbitrary deviation $\eta$ is then also a function of multiple variables:
$$\begin{aligned}
f(x, y; \varepsilon) = f(x, y; 0) + \varepsilon \eta(x, y)
\end{aligned}$$
The derivation procedure starts in the exact same way as before:
$$\begin{aligned}
0
&= \pdv{J}{\varepsilon} \Big|_{\varepsilon = 0}
= \iint \pdv{L}{\varepsilon} \dd{x} \dd{y}
\\
&= \iint \pdv{L}{f} \pdv{f}{\varepsilon} + \pdv{L}{f_x} \pdv{f_x}{\varepsilon} + \pdv{L}{f_y} \pdv{f_y}{\varepsilon} \dd{x} \dd{y}
\\
&= \iint \pdv{L}{f} \eta + \pdv{L}{f_x} \eta_x + \pdv{L}{f_y} \eta_y \dd{x} \dd{y}
\end{aligned}$$
We partially integrate for both $\eta_x$ and $\eta_y$, yielding:
$$\begin{aligned}
0
&= \int \Big[ \pdv{L}{f_x} \eta \Big]_{x_0}^{x_1} \dd{y} + \int \Big[ \pdv{L}{f_y} \eta \Big]_{y_0}^{y_1} \dd{x}
\\
&\quad + \iint \eta \bigg( \pdv{L}{f} - \dv{x} \Big( \pdv{L}{f_x} \Big) - \dv{y} \Big( \pdv{L}{f_y} \Big) \bigg) \dd{x} \dd{y}
\end{aligned}$$
But now, to eliminate these boundary terms, we need extra conditions for $\eta$:
$$\begin{aligned}
\forall y: \eta(x_0, y) = \eta(x_1, y) = 0
\qquad
\forall x: \eta(x, y_0) = \eta(x, y_1) = 0
\end{aligned}$$
In other words, the deviation $\eta$ must be zero on the whole "box".
Again relying on the fact that $\eta$ is arbitrary, the Euler-Lagrange
equation is:
$$\begin{aligned}
0 = \pdv{L}{f} - \dv{x} \Big( \pdv{L}{f_x} \Big) - \dv{y} \Big( \pdv{L}{f_y} \Big)
\end{aligned}$$
This generalizes nicely to functions of even more variables $x_1, x_2, ..., x_N$:
$$\begin{aligned}
\boxed{
0 = \pdv{L}{f} - \sum_{n} \dv{x_n} \Big( \pdv{L}{f_{x_n}} \Big)
}
\end{aligned}$$
|