summaryrefslogtreecommitdiff
path: root/content/know/concept/dielectric-function/index.pdc
blob: cd2a0b70a44594b85099fbb31c1f12978cba08ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
title: "Dielectric function"
firstLetter: "D"
publishDate: 2022-01-24
categories:
- Physics
- Electromagnetism
- Quantum mechanics

date: 2022-01-20T22:04:13+01:00
draft: false
markup: pandoc
---

# Dielectric function

The **dielectric function** or **relative permittivity** $\varepsilon_r$
is a measure of how strongly a given medium counteracts
[electric fields](/know/concept/electric-field/) compared to a vacuum.
Let $\vb{D}$ be the applied external field,
and $\vb{E}$ the effective field inside the material:

$$\begin{aligned}
    \boxed{
        \vb{D} = \varepsilon_0 \varepsilon_r \vb{E}
    }
\end{aligned}$$

If $\varepsilon_r$ is large, then $\vb{D}$ is strongly suppressed,
because the material's electrons and nuclei move to create an opposing field.
In order for $\varepsilon_r$ to be well defined, we only consider linear media,
where the induced polarization $\vb{P}$ is proportional to $\vb{E}$.

We would like to find an alternative definition of $\varepsilon_r$.
Consider that the usual electric fields $\vb{E}$, $\vb{D}$, and $\vb{P}$
can each be written as the gradient of an electrostatic potential like so,
where $\Phi_\mathrm{tot}$, $\Phi_\mathrm{ext}$ and $\Phi_\mathrm{ind}$
are the total, external and induced potentials, respectively:

$$\begin{aligned}
    \vb{E}
    = -\nabla \Phi_\mathrm{tot}
    \qquad \qquad
    \vb{D}
    = - \varepsilon_0 \nabla \Phi_\mathrm{ext}
    \qquad \qquad
    \vb{P}
    = \varepsilon_0 \nabla \Phi_\mathrm{ind}
\end{aligned}$$

Such that $\Phi_\mathrm{tot} = \Phi_\mathrm{ext} + \Phi_\mathrm{ind}$.
Inserting this into $\vb{D} = \varepsilon_0 \varepsilon_r \vb{E}$
then suggests defining:

$$\begin{aligned}
    \boxed{
        \varepsilon_r
        \equiv \frac{\Phi_\mathrm{ext}}{\Phi_\mathrm{tot}}
    }
\end{aligned}$$


## From induced charge density

A common way to calculate $\varepsilon_r$ is from
the induced charge density $\rho_\mathrm{ind}$,
i.e. the offset caused by the material's particles responding to the field.
We start from [Gauss' law](/know/concept/maxwells-equations/) for $\vb{P}$:

$$\begin{aligned}
    \nabla \cdot \vb{P}
    = \varepsilon_0 \nabla^2 \Phi_\mathrm{ind}(\vb{r})
    = - \rho_\mathrm{ind}(\vb{r})
\end{aligned}$$

This is Poisson's equation, which has the following well-known
[Fourier transform](/know/concept/fourier-transform/):

$$\begin{aligned}
    \Phi_\mathrm{ind}(\vb{q})
    = \frac{\rho_\mathrm{ind}(\vb{q})}{\varepsilon_0 |\vb{q}|^2}
    = V(\vb{q}) \: \rho_\mathrm{ind}(\vb{q})
\end{aligned}$$

Where $V(\vb{q})$ represents Coulomb interactions,
and $V(0) = 0$ to ensure overall neutrality:

$$\begin{aligned}
    V(\vb{q})
    = \frac{1}{\varepsilon_0 |\vb{q}|^2}
    \qquad \implies \qquad
    V(\vb{r} - \vb{r}')
    = \frac{1}{4 \pi \varepsilon_0 |\vb{r} - \vb{r}'|}
\end{aligned}$$

The [convolution theorem](/know/concept/convolution-theorem/)
then gives us the solution $\Phi_\mathrm{ind}$ in the $\vb{r}$-domain:

$$\begin{aligned}
    \Phi_\mathrm{ind}(\vb{r})
    = (V * \rho_\mathrm{ind})(\vb{r})
    = \int_{-\infty}^\infty V(\vb{r} - \vb{r}') \: \rho_\mathrm{ind}(\vb{r}') \dd{\vb{r}'}
\end{aligned}$$

To proceed, we need to find an expression for $\rho_\mathrm{ind}$
that is proportional to $\Phi_\mathrm{tot}$ or $\Phi_\mathrm{ext}$,
or some linear combination thereof.
Such an expression must exist for a linear material.

Suppose we can show that $\rho_\mathrm{ind} = C_\mathrm{ext} \Phi_\mathrm{ext}$,
for some $C_\mathrm{ext}$, which may depend on $\vb{q}$. Then:

$$\begin{aligned}
    \Phi_\mathrm{tot}
    = (1 + C_\mathrm{ext} V) \Phi_\mathrm{ext}
    \quad \implies \quad
    \boxed{
        \varepsilon_r(\vb{q})
        = \frac{1}{1 + C_\mathrm{ext}(\vb{q}) V(\vb{q})}
    }
\end{aligned}$$

Similarly, suppose we can show that $\rho_\mathrm{ind} = C_\mathrm{tot} \Phi_\mathrm{tot}$,
for some quantity $C_\mathrm{tot}$, then:

$$\begin{aligned}
    \Phi_\mathrm{ext}
    = (1 - C_\mathrm{tot} V) \Phi_\mathrm{tot}
    \quad \implies \quad
    \boxed{
        \varepsilon_r(\vb{q})
        = 1 - C_\mathrm{tot}(\vb{q}) V(\vb{q})
    }
\end{aligned}$$



## References
1.  H. Bruus, K. Flensberg,
    *Many-body quantum theory in condensed matter physics*,
    2016, Oxford.
2.  M. Fox,
    *Optical properties of solids*, 2nd edition,
    Oxford.