1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
---
title: "Dirac notation"
firstLetter: "D"
publishDate: 2021-02-22
categories:
- Quantum mechanics
- Physics
date: 2021-02-22T21:35:46+01:00
draft: false
markup: pandoc
---
# Dirac notation
**Dirac notation** is a notation to do calculations in a [Hilbert space](/know/concept/hilbert-space/)
without needing to worry about the space's representation. It is
basically the *lingua franca* of quantum mechanics.
In Dirac notation there are **kets** $\ket{V}$ from the Hilbert space
$\mathbb{H}$ and **bras** $\bra{V}$ from a dual $\mathbb{H}'$ of the
former. Crucially, the bras and kets are from different Hilbert spaces
and therefore cannot be added, but every bra has a corresponding ket and
vice versa.
Bras and kets can be combined in two ways: the **inner product**
$\braket{V}{W}$, which returns a scalar, and the **outer product**
$\ket{V} \bra{W}$, which returns a mapping $\hat{L}$ from kets $\ket{V}$
to other kets $\ket{V'}$, i.e. a linear operator. Recall that the
Hilbert inner product must satisfy:
$$\begin{aligned}
\braket{V}{W} = \braket{W}{V}^*
\end{aligned}$$
So far, nothing has been said about the actual representation of bras or
kets. If we represent kets as $N$-dimensional columns vectors, the
corresponding bras are given by the kets' adjoints, i.e. their transpose
conjugates:
$$\begin{aligned}
\ket{V} =
\begin{bmatrix}
v_1 \\ \vdots \\ v_N
\end{bmatrix}
\quad \implies \quad
\bra{V} =
\begin{bmatrix}
v_1^* & \cdots & v_N^*
\end{bmatrix}
\end{aligned}$$
The inner product $\braket{V}{W}$ is then just the familiar dot product $V \cdot W$:
$$\begin{gathered}
\braket{V}{W}
=
\begin{bmatrix}
v_1^* & \cdots & v_N^*
\end{bmatrix}
\cdot
\begin{bmatrix}
w_1 \\ \vdots \\ w_N
\end{bmatrix}
= v_1^* w_1 + ... + v_N^* w_N
\end{gathered}$$
Meanwhile, the outer product $\ket{V} \bra{W}$ creates an $N \cross N$ matrix:
$$\begin{gathered}
\ket{V} \bra{W}
=
\begin{bmatrix}
v_1 \\ \vdots \\ v_N
\end{bmatrix}
\cdot
\begin{bmatrix}
w_1^* & \cdots & w_N^*
\end{bmatrix}
=
\begin{bmatrix}
v_1 w_1^* & \cdots & v_1 w_N^* \\
\vdots & \ddots & \vdots \\
v_N w_1^* & \cdots & v_N w_N^*
\end{bmatrix}
\end{gathered}$$
If the kets are instead represented by functions $f(x)$ of
$x \in [a, b]$, then the bras represent *functionals* $F[u(x)]$ which
take an unknown function $u(x)$ as an argument and turn it into a scalar
using integration:
$$\begin{aligned}
\ket{f} = f(x)
\quad \implies \quad
\bra{f}
= F[u(x)]
= \int_a^b f^*(x) \: u(x) \dd{x}
\end{aligned}$$
Consequently, the inner product is simply the following familiar integral:
$$\begin{gathered}
\braket{f}{g}
= F[g(x)]
= \int_a^b f^*(x) \: g(x) \dd{x}
\end{gathered}$$
However, the outer product becomes something rather abstract:
$$\begin{gathered}
\ket{f} \bra{g}
= f(x) \: G[u(x)]
= f(x) \int_a^b g^*(\xi) \: u(\xi) \dd{\xi}
\end{gathered}$$
This result makes more sense if we surround it by a bra and a ket:
$$\begin{aligned}
\bra{u} \!\Big(\!\ket{f} \bra{g}\!\Big)\! \ket{w}
&= U\big[f(x) \: G[w(x)]\big]
= U\Big[ f(x) \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big]
\\
&= \int_a^b u^*(x) \: f(x) \: \Big(\int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) \dd{x}
\\
&= \Big( \int_a^b u^*(x) \: f(x) \dd{x} \Big) \Big( \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big)
\\
&= \braket{u}{f} \braket{g}{w}
\end{aligned}$$
## References
1. R. Shankar,
*Principles of quantum mechanics*, 2nd edition,
Springer.
|