summaryrefslogtreecommitdiff
path: root/content/know/concept/drude-model/index.pdc
blob: 703ddbbd1109906eaa27551754949e148a1ca5cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
---
title: "Drude model"
firstLetter: "D"
publishDate: 2021-09-23
categories:
- Physics
- Electromagnetism
- Optics

date: 2021-09-23T16:22:51+02:00
draft: false
markup: pandoc
---

# Drude model

The **Drude model** classically predicts
the dielectric function and electric conductivity of a gas of free charge carriers,
as found in metals and doped semiconductors.


## Metals

An [electromagnetic wave](/know/concept/electromagnetic-wave-equation/)
has an oscillating [electric field](/know/concept/electric-field/)
$E(t) = E_0 \exp\!(- i \omega t)$
that exerts a force on the charge carriers,
which have mass $m$ and charge $q$.
They thus obey the following equation of motion,
where $\gamma$ is a frictional damping coefficient:

$$\begin{aligned}
    m \dv[2]{x}{t} + m \gamma \dv{x}{t}
    = q E_0 \exp\!(- i \omega t)
\end{aligned}$$

Inserting the ansatz $x(t) = x_0 \exp\!(- i \omega t)$
and isolating for the displacement $x_0$ yields:

$$\begin{aligned}
    - x_0 m \omega^2 - i x_0 m \gamma \omega
    = q E_0
    \quad \implies \quad
    x_0
    = - \frac{q E_0}{m (\omega^2 + i \gamma \omega)}
\end{aligned}$$

The polarization density $P(t)$ is therefore as shown below.
Note that the dipole moment $p$ goes from negative to positive,
and the electric field $E$ from positive to negative.
Let $N$ be the density of carriers in the gas, then:

$$\begin{aligned}
    P(t)
    = N p(t)
    = N q x(t)
    = - \frac{N q^2}{m (\omega^2 + i \gamma \omega)} E(t)
\end{aligned}$$

The electric displacement field $D$ is thus as follows,
where $\varepsilon_r$ is the unknown relative permittivity of the gas,
which we will find shortly:

$$\begin{aligned}
    D
    = \varepsilon_0 \varepsilon_r E
    = \varepsilon_0 E + P
    = \varepsilon_0 \bigg( 1 - \frac{N q^2}{\varepsilon_0 m} \frac{1}{\omega^2 + i \gamma \omega} \bigg) E
\end{aligned}$$

The parenthesized expression is the desired dielectric function $\varepsilon_r$,
which depends on $\omega$:

$$\begin{aligned}
    \boxed{
        \varepsilon_r(\omega)
        = 1 - \frac{\omega_p^2}{\omega^2 + i \gamma \omega}
    }
\end{aligned}$$

Where we have defined the important so-called **plasma frequency** like so:

$$\begin{aligned}
    \boxed{
        \omega_p
        \equiv \sqrt{\frac{N q^2}{\varepsilon_0 m}}
    }
\end{aligned}$$

If $\gamma = 0$, then $\varepsilon_r$ is
negative $\omega < \omega_p$,
positive for $\omega > \omega_p$,
and zero for $\omega = \omega_p$.
Respectively, this leads to
an imaginary index $\sqrt{\varepsilon_r}$ (high absorption),
a real index tending to $1$ (transparency),
and the possibility of self-sustained plasma oscillations.
For metals, $\omega_p$ lies in the UV.

We can refine this result for $\varepsilon_r$,
by recognizing the (mean) velocity $v = \dv*{x}{t}$,
and rewriting the equation of motion accordingly:

$$\begin{aligned}
    m \dv{v}{t} + m \gamma v = q E(t)
\end{aligned}$$

Note that $m v$ is simply the momentum $p$.
We define the **momentum scattering time** $\tau \equiv 1 / \gamma$,
which represents the average time between collisions,
where each collision resets the involved particles' momentums to zero.
Or, more formally:

$$\begin{aligned}
    \dv{p}{t}
    = - \frac{p}{\tau} + q E
\end{aligned}$$

Returning to the equation for the mean velocity $v$,
we insert the ansatz $v(t) = v_0 \exp\!(- i \omega t)$,
for the same electric field $E(t) = E_0 \exp\!(-i \omega t)$ as before:

$$\begin{aligned}
    - i m \omega v_0 + \frac{m}{\tau} v_0 = q E_0
    \quad \implies \quad
    v_0 = \frac{q \tau}{m (1 - i \omega \tau)} E_0
\end{aligned}$$

From $v(t)$, we find the resulting average current density $J(t)$ to be as follows:

$$\begin{aligned}
    J(t)
    = - N q v(t)
    = \sigma E(t)
\end{aligned}$$

Where $\sigma(\omega)$ is the **AC conductivity**,
which depends on the **DC conductivity** $\sigma_0$:

$$\begin{aligned}
    \boxed{
        \sigma
        = \frac{\sigma_0}{1 - i \omega \tau}
    }
    \qquad \quad
    \boxed{
        \sigma_0
        = \frac{N q^2 \tau}{m}
    }
\end{aligned}$$

We can use these quantities to rewrite
the dielectric function $\varepsilon_r$ from earlier:

$$\begin{aligned}
    \boxed{
        \varepsilon_r(\omega)
        = 1 + \frac{i \sigma(\omega)}{\varepsilon_0 \omega}
    }
\end{aligned}$$


## Doped semiconductors

Doping a semiconductor introduces
free electrons (n-type)
or free holes (p-type),
which can be treated as free particles
moving in the bands of the material.

The Drude model can also be used in this case,
by replacing the actual carrier mass $m$
by the effective mass $m^*$.
Furthermore, semiconductors already have
a high intrinsic permittivity $\varepsilon_{\mathrm{int}}$
before the dopant is added,
so the diplacement field $D$ is:

$$\begin{aligned}
    D
    = \varepsilon_0 E + P_{\mathrm{int}} + P_{\mathrm{free}}
    = \varepsilon_{\mathrm{int}} \varepsilon_0 E - \frac{N q^2}{m^* (\omega^2 + i \gamma \omega)} E
\end{aligned}$$

Where $P_{\mathrm{int}}$ is the intrinsic undoped polarization,
and $P_{\mathrm{free}}$ is the contribution of the free carriers.
The dielectric function $\varepsilon_r(\omega)$ is therefore given by:

$$\begin{aligned}
    \boxed{
        \varepsilon_r(\omega)
        = \varepsilon_{\mathrm{int}} \Big( 1 - \frac{\omega_p^2}{\omega^2 + i \gamma \omega} \Big)
    }
\end{aligned}$$

Where the plasma frequency $\omega_p$ has been redefined as follows
to include $\varepsilon_\mathrm{int}$:

$$\begin{aligned}
    \boxed{
        \omega_p
        = \sqrt{\frac{N q^2}{\varepsilon_{\mathrm{int}} \varepsilon_0 m^*}}
    }
\end{aligned}$$

The meaning of $\omega_p$ is the same as for metals,
with high absorption for $\omega < \omega_p$.
However, due to the lower carrier density $N$ in a semiconductor,
$\omega_p$ lies in the IR rather than UV.

However, instead of asymptotically going to $1$ for $\omega > \omega_p$ like a metal,
$\varepsilon_r$ tends to $\varepsilon_\mathrm{int}$ instead,
and crosses $1$ along the way,
at which point the reflectivity is zero.
This occurs at:

$$\begin{aligned}
    \omega^2
    = \frac{\varepsilon_{\mathrm{int}}}{\varepsilon_{\mathrm{int}} - 1} \omega_p^2
\end{aligned}$$

This is used to experimentally determine the effective mass $m^*$
of the doped semiconductor,
by finding which value of $m^*$ gives the measured $\omega$.



## References
1.  M. Fox,
    *Optical properties of solids*, 2nd edition,
    Oxford.
2.  S.H. Simon,
    *The Oxford solid state basics*,
    Oxford.