1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
---
title: "Elastic collision"
firstLetter: "E"
publishDate: 2021-10-04
categories:
- Physics
- Classical mechanics
date: 2021-09-23T16:22:39+02:00
draft: false
markup: pandoc
---
# Elastic collision
In an **elastic collision**,
the sum of the colliding objects' kinetic energies
is the same before and after the collision.
In contrast, in an **inelastic collision**,
some of that energy is converted into another form,
for example heat.
## One dimension
In 1D, not only the kinetic energy is conserved, but also the total momentum.
Let $v_1$ and $v_2$ be the initial velocities of objects 1 and 2,
and $v_1'$ and $v_2'$ their velocities afterwards:
$$\begin{aligned}
\begin{cases}
\quad\! m_1 v_1 +\quad m_2 v_2
= \quad\, m_1 v_1' +\quad m_2 v_2'
\\
\displaystyle\frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2
= \frac{1}{2} m_1 v_1'^2 + \frac{1}{2} m_2 v_2'^2
\end{cases}
\end{aligned}$$
After some rearranging,
these two equations can be written as follows:
$$\begin{aligned}
\begin{cases}
m_1 (v_1 - v_1')
\qquad\quad\:\;\; = m_2 (v_2' - v_2)
\\
m_1 (v_1 - v_1') (v_1 + v_1')
= m_2 (v_2' - v_2) (v_2 + v_2')
\end{cases}
\end{aligned}$$
Using the first equation to replace $m_1 (v_1 \!-\! v_1')$
with $m_2 (v_2 \!-\! v_2')$ in the second:
$$\begin{aligned}
m_2 (v_1 + v_1') (v_2' - v_2)
= m_2 (v_2 + v_2') (v_2' - v_2)
\end{aligned}$$
Dividing out the common factors
then leads us to a simplified system of equations:
$$\begin{aligned}
\begin{cases}
\qquad\;\; v_1 + v_1'
= v_2 + v_2'
\\
m_1 v_1 + m_2 v_2
= m_1 v_1' + m_2 v_2'
\end{cases}
\end{aligned}$$
Note that the first relation is equivalent to $v_1 - v_2 = v_2' - v_1'$,
meaning that the objects' relative velocity
is reversed by the collision.
Moving on, we replace $v_1'$ in the second equation:
$$\begin{aligned}
m_1 v_1 + m_2 v_2
&= m_1 (v_2 + v_2' - v_1) + m_2 v_2'
\\
(m_1 + m_2) v_2'
&= 2 m_1 v_1 + (m_2 - m_1) v_2
\end{aligned}$$
Dividing by $m_1 + m_2$,
and going through the same process for $v_1'$,
we arrive at:
$$\begin{aligned}
\boxed{
\begin{aligned}
v_1'
&= \frac{(m_1 - m_2) v_1 + 2 m_2 v_2}{m_1 + m_2}
\\
v_2'
&= \frac{2 m_1 v_1 + (m_2 - m_1) v_2}{m_1 + m_2}
\end{aligned}
}
\end{aligned}$$
To analyze this result,
for practicality, we simplify it by setting $v_2 = 0$.
In that case:
$$\begin{aligned}
v_1'
= \frac{(m_1 - m_2) v_1}{m_1 + m_2}
\qquad \quad
v_2'
= \frac{2 m_1 v_1}{m_1 + m_2}
\end{aligned}$$
How much of its energy and momentum does object 1 transfer to object 2?
The following ratios compare $v_1$ and $v_2'$ to quantify the transfer:
$$\begin{aligned}
\frac{m_2 v_2'}{m_1 v_1}
= \frac{2 m_2}{m_1 + m_2}
\qquad \quad
\frac{m_2 v_2'^2}{m_1 v_1^2}
= \frac{4 m_1 m_2}{(m_1 + m_2)^2}
\end{aligned}$$
If $m_1 = m_2$, both ratios reduce to $1$,
meaning that all energy and momentum is transferred,
and object 1 is at rest after the collision.
Newton's cradle is an example of this.
If $m_1 \ll m_2$, object 1 simply bounces off object 2,
barely transferring any energy.
Object 2 ends up with twice object 1's momentum,
but $v_2'$ is very small and thus negligible:
$$\begin{aligned}
\frac{m_2 v_2'}{m_1 v_1}
\approx 2
\qquad \quad
\frac{m_2 v_2'^2}{m_1 v_1^2}
\approx \frac{4 m_1}{m_2}
\end{aligned}$$
If $m_1 \gg m_2$, object 1 barely notices the collision,
so not much is transferred to object 2:
$$\begin{aligned}
\frac{m_2 v_2'}{m_1 v_1}
\approx \frac{2 m_2}{m_1}
\qquad \quad
\frac{m_2 v_2'^2}{m_1 v_1^2}
\approx \frac{4 m_2}{m_1}
\end{aligned}$$
## References
1. M. Salewski, A.H. Nielsen,
*Plasma physics: lecture notes*,
2021, unpublished.
|