1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
---
title: "Electromagnetic wave equation"
firstLetter: "E"
publishDate: 2021-09-09
categories:
- Physics
- Electromagnetism
- Optics
date: 2021-09-09T21:20:31+02:00
draft: false
markup: pandoc
---
# Electromagnetic wave equation
The electromagnetic wave equation describes
the propagation of light through various media.
Since an electromagnetic (light) wave consists of
an [electric field](/know/concept/electric-field/)
and a [magnetic field](/know/concept/magnetic-field/),
we need [Maxwell's equations](/know/concept/maxwells-equations/)
in order to derive the wave equation.
## Uniform medium
We will use all of Maxwell's equations,
but we start with Ampère's circuital law for the "free" fields $\vb{H}$ and $\vb{D}$,
in the absence of a free current $\vb{J}_\mathrm{free} = 0$:
$$\begin{aligned}
\nabla \cross \vb{H}
= \pdv{\vb{D}}{t}
\end{aligned}$$
We assume that the medium is isotropic, linear,
and uniform in all of space, such that:
$$\begin{aligned}
\vb{D} = \varepsilon_0 \varepsilon_r \vb{E}
\qquad \quad
\vb{H} = \frac{1}{\mu_0 \mu_r} \vb{B}
\end{aligned}$$
Which, upon insertion into Ampère's law,
yields an equation relating $\vb{B}$ and $\vb{E}$.
This may seem to contradict Ampère's "total" law,
but keep in mind that $\vb{J}_\mathrm{bound} \neq 0$ here:
$$\begin{aligned}
\nabla \cross \vb{B}
= \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv{\vb{E}}{t}
\end{aligned}$$
Now we take the curl, rearrange,
and substitute $\nabla \cross \vb{E}$ according to Faraday's law:
$$\begin{aligned}
\nabla \cross (\nabla \cross \vb{B})
= \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv{t} (\nabla \cross \vb{E})
= - \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv[2]{\vb{B}}{t}
\end{aligned}$$
Using a vector identity, we rewrite the leftmost expression,
which can then be reduced thanks to Gauss' law for magnetism $\nabla \cdot \vb{B} = 0$:
$$\begin{aligned}
- \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv[2]{\vb{B}}{t}
&= \nabla (\nabla \cdot \vb{B}) - \nabla^2 \vb{B}
= - \nabla^2 \vb{B}
\end{aligned}$$
This describes $\vb{B}$.
Next, we repeat the process for $\vb{E}$:
taking the curl of Faraday's law yields:
$$\begin{aligned}
\nabla \cross (\nabla \cross \vb{E})
= - \pdv{t} (\nabla \cross \vb{B})
= - \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv[2]{\vb{E}}{t}
\end{aligned}$$
Which can be rewritten using same vector identity as before,
and then reduced by assuming that there is no net charge density $\rho = 0$
in Gauss' law, such that $\nabla \cdot \vb{E} = 0$:
$$\begin{aligned}
- \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv[2]{\vb{E}}{t}
&= \nabla (\nabla \cdot \vb{E}) - \nabla^2 \vb{E}
= - \nabla^2 \vb{E}
\end{aligned}$$
We thus arrive at the following two (implicitly coupled)
wave equations for $\vb{E}$ and $\vb{B}$,
where we have defined the phase velocity $v \equiv 1 / \sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}$:
$$\begin{aligned}
\boxed{
\pdv[2]{\vb{E}}{t} - \frac{1}{v^2} \nabla^2 \vb{E}
= 0
}
\qquad \quad
\boxed{
\pdv[2]{\vb{B}}{t} - \frac{1}{v^2} \nabla^2 \vb{B}
= 0
}
\end{aligned}$$
Traditionally, it is said that the solutions are as follows,
where the wavenumber $|\vb{k}| = \omega / v$:
$$\begin{aligned}
\vb{E}(\vb{r}, t)
&= \vb{E}_0 \exp\!(i \vb{k} \cdot \vb{r} - i \omega t)
\\
\vb{B}(\vb{r}, t)
&= \vb{B}_0 \exp\!(i \vb{k} \cdot \vb{r} - i \omega t)
\end{aligned}$$
In fact, thanks to linearity, these **plane waves** can be treated as
terms in a Fourier series, meaning that virtually
*any* function $f(\vb{k} \cdot \vb{r} - \omega t)$ is a valid solution.
Keep in mind that in reality $\vb{E}$ and $\vb{B}$ are real,
so although it is mathematically convenient to use plane waves,
in the end you will need to take the real part.
## Non-uniform medium
A useful generalization is to allow spatial change
in the relative permittivity $\varepsilon_r(\vb{r})$
and the relative permeability $\mu_r(\vb{r})$.
We still assume that the medium is linear and isotropic, so:
$$\begin{aligned}
\vb{D}
= \varepsilon_0 \varepsilon_r(\vb{r}) \vb{E}
\qquad \quad
\vb{B}
= \mu_0 \mu_r(\vb{r}) \vb{H}
\end{aligned}$$
Inserting these expressions into Faraday's and Ampère's laws
respectively yields:
$$\begin{aligned}
\nabla \cross \vb{E}
= - \mu_0 \mu_r(\vb{r}) \pdv{\vb{H}}{t}
\qquad \quad
\nabla \cross \vb{H}
= \varepsilon_0 \varepsilon_r(\vb{r}) \pdv{\vb{E}}{t}
\end{aligned}$$
We then divide Ampère's law by $\varepsilon_r(\vb{r})$,
take the curl, and substitute Faraday's law, giving:
$$\begin{aligned}
\nabla \cross \Big( \frac{1}{\varepsilon_r} \nabla \cross \vb{H} \Big)
= \varepsilon_0 \pdv{t} (\nabla \cross \vb{E})
= - \mu_0 \mu_r \varepsilon_0 \pdv[2]{\vb{H}}{t}
\end{aligned}$$
Next, we exploit linearity by decomposing $\vb{H}$ and $\vb{E}$
into Fourier series, with terms given by:
$$\begin{aligned}
\vb{H}(\vb{r}, t)
= \vb{H}(\vb{r}) \exp\!(- i \omega t)
\qquad \quad
\vb{E}(\vb{r}, t)
= \vb{E}(\vb{r}) \exp\!(- i \omega t)
\end{aligned}$$
By inserting this ansatz into the equation,
we can remove the explicit time dependence:
$$\begin{aligned}
\nabla \cross \Big( \frac{1}{\varepsilon_r} \nabla \cross \vb{H} \Big) \exp\!(- i \omega t)
= \mu_0 \varepsilon_0 \omega^2 \mu_r \vb{H} \exp\!(- i \omega t)
\end{aligned}$$
Dividing out $\exp\!(- i \omega t)$,
we arrive at an eigenvalue problem for $\omega^2$,
with $c = 1 / \sqrt{\mu_0 \varepsilon_0}$:
$$\begin{aligned}
\boxed{
\nabla \cross \Big( \frac{1}{\varepsilon_r(\vb{r})} \nabla \cross \vb{H}(\vb{r}) \Big)
= \Big( \frac{\omega}{c} \Big)^2 \mu_r(\vb{r}) \vb{H}(\vb{r})
}
\end{aligned}$$
Compared to a uniform medium, $\omega$ is often not arbitrary here:
there are discrete eigenvalues $\omega$,
corresponding to discrete **modes** $\vb{H}(\vb{r})$.
Next, we go through the same process to find an equation for $\vb{E}$.
Starting from Faraday's law, we divide by $\mu_r(\vb{r})$,
take the curl, and insert Ampère's law:
$$\begin{aligned}
\nabla \cross \Big( \frac{1}{\mu_r} \nabla \cross \vb{E} \Big)
= - \mu_0 \pdv{t} (\nabla \cross \vb{H})
= - \mu_0 \varepsilon_0 \varepsilon_r \pdv[2]{\vb{E}}{t}
\end{aligned}$$
Then, by replacing $\vb{E}(\vb{r}, t)$ with our plane-wave ansatz,
we remove the time dependence:
$$\begin{aligned}
\nabla \cross \Big( \frac{1}{\mu_r} \nabla \cross \vb{E} \Big) \exp\!(- i \omega t)
= - \mu_0 \varepsilon_0 \omega^2 \varepsilon_r \vb{E} \exp\!(- i \omega t)
\end{aligned}$$
Which, after dividing out $\exp\!(- i \omega t)$,
yields an analogous eigenvalue problem with $\vb{E}(r)$:
$$\begin{aligned}
\boxed{
\nabla \cross \Big( \frac{1}{\mu_r(\vb{r})} \nabla \cross \vb{E}(\vb{r}) \Big)
= \Big( \frac{\omega}{c} \Big)^2 \varepsilon_r(\vb{r}) \vb{E}(\vb{r})
}
\end{aligned}$$
Usually, it is a reasonable approximation
to say $\mu_r(\vb{r}) = 1$,
in which case the equation for $\vb{H}(\vb{r})$
becomes a Hermitian eigenvalue problem,
and is thus easier to solve than for $\vb{E}(\vb{r})$.
Keep in mind, however, that in any case,
the solutions $\vb{H}(\vb{r})$ and/or $\vb{E}(\vb{r})$
must satisfy the two Maxwell's equations that were not explicitly used:
$$\begin{aligned}
\nabla \cdot (\varepsilon_r \vb{E}) = 0
\qquad \quad
\nabla \cdot (\mu_r \vb{H}) = 0
\end{aligned}$$
This is equivalent to demanding that the resulting waves are *transverse*,
or in other words,
the wavevector $\vb{k}$ must be perpendicular to
the amplitudes $\vb{H}_0$ and $\vb{E}_0$.
## References
1. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade,
*Photonic crystals: molding the flow of light*,
2nd edition, Princeton.
|