summaryrefslogtreecommitdiff
path: root/content/know/concept/fabry-perot-cavity/index.pdc
blob: d40852f4d657360cdc0399a60ae75712f1922cb1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
title: "Fabry-Pérot cavity"
firstLetter: "F"
publishDate: 2021-09-18
categories:
- Physics
- Optics

date: 2021-09-18T00:42:59+02:00
draft: false
markup: pandoc
---

# Fabry-Pérot cavity

In its simplest form, a **Fabry-Pérot cavity**
is a region of light-transmitting medium
surrounded by two mirrors,
which may transmit some of the incoming light.
Such a setup can be used as e.g. an interferometer or a laser cavity.


## Modes of macroscopic cavity

Consider a Fabry-Pérot cavity large enough
that we can neglect the mirrors' thicknesses,
which have reflection coefficients $r_L$ and $r_R$.
Let $\tilde{n}_C$ be the complex refractive index inside,
and $\tilde{n}_L$ and $\tilde{n}_R$ be the indices outside.
The cavity has length $L$, centered on $x = 0$.

To find the quasinormal modes,
we make the following ansatz, with mode number $m$:

$$\begin{aligned}
    E_m(x)
    =
    \begin{cases}
        A_m \exp\!(-i \tilde{n}_L \tilde{k}_m x) & \mathrm{if}\; x < -L/2 \\
        B_m \exp\!(i \tilde{n}_C \tilde{k}_m x) + C_m \exp\!(-i \tilde{n}_C \tilde{k}_m x) & \mathrm{if}\; -\!L/2 < x < L/2 \\
        D_m \exp\!(i \tilde{n}_R \tilde{k}_m x) & \mathrm{if}\; L/2 < x
    \end{cases}
\end{aligned}$$

On the left, $B_m$ is the reflection of $C_m$,
and on the right, $C_m$ is the reflection of $B_m$,
where the reflected amplitude is determined
by the coefficients $r_L$ and $r_L$, respectively:

$$\begin{aligned}
    B_m \exp\!(-i \tilde{n}_C \tilde{k}_m L/2)
    &= r_L C_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2)
    \\
    C_m \exp\!(-i \tilde{n}_C \tilde{k}_m L/2)
    &= r_R B_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2)
\end{aligned}$$

These equations might seem to contradict each other.
We recast them into matrix form:

$$\begin{aligned}
    \begin{bmatrix}
        1 & - r_L \exp\!(i \tilde{n}_C \tilde{k}_m L) \\
        - r_R \exp\!(i \tilde{n}_C \tilde{k}_m L) & 1
    \end{bmatrix}
    \cdot
    \begin{bmatrix}
        B_m \\ C_m
    \end{bmatrix}
    =
    \begin{bmatrix}
        0 \\ 0
    \end{bmatrix}
\end{aligned}$$

Now, we do not want to be able to find values for $B_m$ and $C_m$
that satisfy this for a given $\tilde{k}_m$.
Instead, we only want specific values of $\tilde{k}_m$ to be allowed,
corresponding to the cavity's modes.
We thus demand that the determinant to zero:

$$\begin{aligned}
    0
    &= 1 - r_L r_R \exp\!(i 2 \tilde{n}_C \tilde{k}_m L)
\end{aligned}$$

Isolating this for $\tilde{k}_m$ yields the following modes,
where $m$ is an arbitrary integer:

$$\begin{aligned}
    \boxed{
        \tilde{k}_m
        = - \frac{\ln\!(r_L r_R) + i 2 \pi m}{i 2 \tilde{n}_C L}
    }
\end{aligned}$$

These $\tilde{k}_m$ satisfy the matrix equation above.
Thanks to linearity, we can choose one of $B_m$ or $C_m$,
and then the other is determined by the corresponding equation.

Finally, we look at the light transmitted through the mirrors,
according to $1 \!-\! r_L$ and $1 \!-\! r_R$:

$$\begin{aligned}
    A_m \exp\!(i \tilde{n}_L \tilde{k}_m L/2)
    &= (1 - r_L) C_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2)
    \\
    D_m \exp\!(i \tilde{n}_R \tilde{k}_m L/2)
    &= (1 - r_R) B_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2)
\end{aligned}$$

We simply isolate for $A_m$ and $D_m$ respectively,
yielding the following amplitudes:

$$\begin{aligned}
    A_m
    &= (1 - r_L) C_m \exp\!\big( i (\tilde{n}_C \!-\! \tilde{n}_L) \tilde{k}_m L/2 \big)
    \\
    D_m
    &= (1 - r_R) B_m \exp\!\big( i (\tilde{n}_C \!-\! \tilde{n}_R) \tilde{k}_m L/2 \big)
\end{aligned}$$

Note that we have not demanded continuity of the electric field.
This is because the mirrors are infinitely thin "magic" planes;
if we had instead used a full physical mirror structure,
then the we would have demanded continuity,
as you might have expected.



## References
1.  P.T. Kristensen, K. Herrmann, F. Intravaia, K. Busch,
    [Modeling electromagnetic resonators using quasinormal modes](https://doi.org/10.1364/AOP.377940),
    2020, Optical Society of America.