summaryrefslogtreecommitdiff
path: root/content/know/concept/fermi-dirac-distribution/index.pdc
blob: 8820cbb78fa911e0bc4bbbfbadf99c26b3e33e27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
title: "Fermi-Dirac distribution"
firstLetter: "F"
publishDate: 2021-07-11
categories:
- Physics
- Statistics
- Quantum mechanics

date: 2021-07-11T18:22:37+02:00
draft: false
markup: pandoc
---

# Fermi-Dirac distribution

**Fermi-Dirac statistics** describe how identical **fermions**,
which obey the [Pauli exclusion principle](/know/concept/pauli-exclusion-principle/),
will distribute themselves across the available states in a system at equilibrium.

Consider one single-particle state $s$,
which can contain $0$ or $1$ fermions.
Because the occupation number $N_s$ is variable,
we turn to the [grand canonical ensemble](/know/concept/grand-canonical-ensemble/),
whose grand partition function $\mathcal{Z}_s$ is as follows,
where we sum over all microstates of $s$:

$$\begin{aligned}
    \mathcal{Z}_s
    = \sum_{N_s = 0}^1 \exp\!(- \beta N_s (\varepsilon_s - \mu))
    = 1 + \exp\!(- \beta (\varepsilon_s - \mu))
\end{aligned}$$

Where $\mu$ is the chemical potential,
and $\varepsilon_s$ is the energy contribution per particle in $s$,
i.e. the total energy of all particles $E_s = \varepsilon_s N_s$.

The corresponding [thermodynamic potential](/know/concept/thermodynamic-potential/)
is the Landau potential $\Omega_s$, given by:

$$\begin{aligned}
    \Omega_s
    = - k T \ln{\mathcal{Z}_s}
    = - k T \ln\!\Big( 1 + \exp\!(- \beta (\varepsilon_s - \mu)) \Big)
\end{aligned}$$

The average number of particles $\expval{N_s}$
in state $s$ is then found to be as follows:

$$\begin{aligned}
    \expval{N_s}
    = - \pdv{\Omega_s}{\mu}
    = k T \pdv{\ln{\mathcal{Z}_s}}{\mu}
    = \frac{\exp\!(- \beta (\varepsilon_s - \mu))}{1 + \exp\!(- \beta (\varepsilon_s - \mu))}
\end{aligned}$$

By multiplying both the numerator and the denominator by $\exp\!(\beta (\varepsilon_s \!-\! \mu))$,
we arrive at the standard form of
the **Fermi-Dirac distribution** or **Fermi function** $f_F$:

$$\begin{aligned}
    \boxed{
        \expval{N_s}
        = f_F(\varepsilon_s)
        = \frac{1}{\exp\!(\beta (\varepsilon_s - \mu)) + 1}
    }
\end{aligned}$$

This tells the expected occupation number $\expval{N_s}$ of state $s$,
given a temperature $T$ and chemical potential $\mu$.
The corresponding variance $\sigma_s^2$ of $N_s$ is found to be:

$$\begin{aligned}
    \boxed{
        \sigma_s^2
        = k T \pdv{\expval{N_s}}{\mu}
        = \expval{N_s} \big(1 - \expval{N_s}\big)
    }
\end{aligned}$$



## References
1.  H. Gould, J. Tobochnik,
    *Statistical and thermal physics*, 2nd edition,
    Princeton.