1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
---
title: "Green's functions"
firstLetter: "G"
publishDate: 2021-11-03
categories:
- Physics
- Quantum mechanics
date: 2021-11-01T09:46:27+01:00
draft: false
markup: pandoc
---
# Green's functions
In many-body quantum theory, **Green's functions**
are correlation functions between particle creation/annihilation operators.
They are somewhat related to
[fundamental solution](/know/concept/fundamental-solution/) functions,
which are also often called *Green's functions*.
The **retarded Green's function** $G_{\nu \nu'}^R$
and the **advanced Green's function** $G_{\nu \nu'}^A$
are defined like so,
where the expectation value $\expval{}$ is
with respect to thermal equilibrium,
$\nu$ and $\nu'$ are labels of single-particle states that may include spin,
and $\hat{c}_\nu$ and $\hat{c}_{\nu'}^\dagger$ are annihilation/creation operators
from the [second quantization](/know/concept/second-quantization/):
$$\begin{aligned}
\boxed{
\begin{aligned}
G_{\nu \nu'}^R(t, t')
&\equiv -\frac{i}{\hbar} \Theta(t - t') \expval{\comm{\hat{c}_{\nu}(t)}{\hat{c}_{\nu'}^\dagger(t')}}
\\
G_{\nu \nu'}^A(t, t')
&\equiv \frac{i}{\hbar} \Theta(t' - t) \expval{\comm{\hat{c}_{\nu}(t)}{\hat{c}_{\nu'}^\dagger(t')}}
\end{aligned}
}
\end{aligned}$$
Where $\Theta$ is the [Heaviside step function](/know/concept/heaviside-step-function/).
This is for bosons; for fermions the commutator
must be replaced by an anticommutator, as usual.
Notice that $G^R_{\nu \nu'}$ has the same form as the correlation function
from the [Kubo formula](/know/concept/kubo-formula/).
Furthermore, the **greater Green's function** $G_{\nu \nu'}^>$
and **lesser Green's function** $G_{\nu \nu'}^<$ are:
$$\begin{aligned}
\boxed{
\begin{aligned}
G_{\nu \nu'}^>(t, t')
&\equiv -\frac{i}{\hbar} \expval{\hat{c}_{\nu}(t) \hat{c}_{\nu'}^\dagger(t')}
\\
G_{\nu \nu'}^<(t, t')
&\equiv \mp \frac{i}{\hbar} \expval{\hat{c}_{\nu'}^\dagger(t') \hat{c}_{\nu}(t)}
\end{aligned}
}
\end{aligned}$$
Where $-$ is for bosons, and $+$ is for fermions.
The retarded and advanced Green's functions can thus be expressed as follows:
$$\begin{aligned}
G_{\nu \nu'}^R(t, t')
&= \Theta(t - t') \Big( G_{\nu \nu'}^>(t, t') - G_{\nu \nu'}^<(t, t') \Big)
\\
G_{\nu \nu'}^A(t, t')
&= \Theta(t' - t) \Big( G_{\nu \nu'}^<(t, t') - G_{\nu \nu'}^>(t, t') \Big)
\end{aligned}$$
If the Hamiltonian involves interactions,
it might be more natural to use quantum field operators $\hat{\Psi}(\vb{r}, t)$
instead of choosing a basis of single-particle states $\psi_\nu$.
In that case, instead of a label $\nu$,
we use the spin $s$ and position $\vb{r}$, leading to:
$$\begin{aligned}
G_{ss'}^R(\vb{r}, t; \vb{r}', t')
&= -\frac{i}{\hbar} \Theta(t - t') \expval{\comm{\hat{\Psi}_{s}(\vb{r}, t)}{\hat{\Psi}_{s'}^\dagger(\vb{r}', t')}}
\\
&= \sum_{\nu \nu'} \psi_\nu(\vb{r}) \: \psi^*_{\nu'}(\vb{r}') \: G_{\nu \nu'}^R(t, t')
\end{aligned}$$
And analogously for $G_{ss'}^A$, $G_{ss'}^>$ and $G_{ss'}^<$.
Note that the time-dependence is given to the old $G_{\nu \nu'}^R$,
i.e. to $\hat{c}_\nu$ and $\hat{c}_{\nu'}^\dagger$.
In other words, we are using the
[Heisenberg picture](/know/concept/heisenberg-picture/).
If the Hamiltonian is time-independent,
then it can be shown that all the Green's functions
only depend on the time-difference $t - t'$
(for a proof, see [Kubo formula](/know/concept/kubo-formula/)):
$$\begin{aligned}
G_{\nu \nu'}^>(t, t') = G_{\nu \nu'}^>(t - t')
\qquad \quad
G_{\nu \nu'}^<(t, t') = G_{\nu \nu'}^<(t - t')
\end{aligned}$$
If the Hamiltonian is both time-independent and non-interacting,
then the time-dependence of $\hat{c}_\nu$
can simply be factored out as follows:
$$\begin{aligned}
\hat{c}_\nu(t)
= \hat{c}_\nu \exp\!(- i \varepsilon_\nu t / \hbar)
\end{aligned}$$
Then the diagonal ($\nu = \nu'$) greater and lesser Green's functions
can be written in the form below, where $f_\nu$ is either
the [Fermi-Dirac distribution](/know/concept/fermi-dirac-distribution/)
or the [Bose-Einstein distribution](/know/concept/bose-einstein-distribution/).
Note that the off-diagonal ($\nu \neq \nu'$) functions vanish,
because $\expval*{\hat{c}_{\nu} \hat{c}_{\nu'}^\dagger} = 0$ there,
since the many-particle states are simply orthogonal
[Slater determinants](/know/concept/slater-determinant/)/permanents:
$$\begin{aligned}
G_{\nu \nu}^>(t, t')
&= -\frac{i}{\hbar} \expval{\hat{c}_{\nu} \hat{c}_{\nu}^\dagger} \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big)
\\
&= -\frac{i}{\hbar} (1 - f_\nu) \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big)
\\
G_{\nu \nu}^<(t, t')
&= \mp \frac{i}{\hbar} \expval{\hat{c}_{\nu}^\dagger \hat{c}_{\nu}} \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big)
\\
&= \mp \frac{i}{\hbar} f_\nu \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big)
\end{aligned}$$
The diagonal retarded and advanced Green's functions then reduce to
the following, where $+$ applies to fermions, and $-$ to bosons:
$$\begin{aligned}
G_{\nu \nu}^R(t, t')
&= - \frac{i}{\hbar} \Theta(t - t') \big( 1 - f_\nu \pm f_\nu \big) \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big)
\\
G_{\nu \nu}^A(t, t')
&= \frac{i}{\hbar} \Theta(t - t') \big( 1 - f_\nu \pm f_\nu \big) \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big)
\end{aligned}$$
## References
1. H. Bruus, K. Flensberg,
*Many-body quantum theory in condensed matter physics*,
2016, Oxford.
|