1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
---
title: "Heaviside step function"
firstLetter: "H"
publishDate: 2021-02-25
categories:
- Mathematics
- Physics
date: 2021-02-25T11:28:02+01:00
draft: false
markup: pandoc
---
# Heaviside step function
The **Heaviside step function** $\Theta(t)$,
is a discontinuous function used for enforcing causality
or for representing a signal switched on at $t = 0$.
It is defined as:
$$\begin{aligned}
\boxed{
\Theta(t) =
\begin{cases}
0 & \mathrm{if}\: t < 0 \\
1 & \mathrm{if}\: t > 1
\end{cases}
}
\end{aligned}$$
The value of $\Theta(t \!=\! 0)$ varies between definitions;
common choices are $0$, $1$ and $1/2$.
In practice, this rarely matters, and some authors even
change their definition on the fly for convenience.
For physicists, $\Theta(0) = 1$ is generally best, such that:
$$\begin{aligned}
\boxed{
\forall n \in \mathbb{R}: \Theta^n(t) = \Theta(t)
}
\end{aligned}$$
Unsurprisingly, the first-order derivative of $\Theta(t)$ is
the [Dirac delta function](/know/concept/dirac-delta-function/):
$$\begin{aligned}
\boxed{
\Theta'(t) = \delta(t)
}
\end{aligned}$$
The [Fourier transform](/know/concept/fourier-transform/)
of $\Theta(t)$ is noteworthy.
In this case, it is easiest to use $\Theta(0) = 1/2$,
such that the Heaviside step function can be expressed
using the signum function $\mathrm{sgn}(t)$:
$$\begin{aligned}
\Theta(t) = \frac{1}{2} + \frac{\mathrm{sgn}(t)}{2}
\end{aligned}$$
We then take the Fourier transform,
where $A$ and $s$ are constants from its definition:
$$\begin{aligned}
\tilde{\Theta}(\omega)
= \hat{\mathcal{F}}\{\Theta(t)\}
= \frac{A}{2} \Big( \int_{-\infty}^\infty \exp(i s \omega t) \dd{t} + \int_{-\infty}^\infty \mathrm{sgn}(t) \exp(i s \omega t) \dd{t} \Big)
\end{aligned}$$
The first term is proportional to the Dirac delta function.
The second integral is problematic, so we take the Cauchy principal value $\pv{}$
and look up the integral:
$$\begin{aligned}
\tilde{\Theta}(\omega)
&= A \pi \delta(s \omega) + \frac{A}{2} \pv{\int_{-\infty}^\infty \mathrm{sgn}(t) \exp(i s \omega t) \dd{t}}
= \frac{A}{|s|} \pi \delta(\omega) + i \frac{A}{s} \pv{\frac{1}{\omega}}
\end{aligned}$$
The use of $\pv{}$ without an integral is an abuse of notation,
and means that this result only makes sense when wrapped in an integral.
Formally, $\pv{\{1 / \omega\}}$ is a [Schwartz distribution](/know/concept/schwartz-distribution/).
We thus have:
$$\begin{aligned}
\boxed{
\tilde{\Theta}(\omega)
= \frac{A}{|s|} \Big( \pi \delta(\omega) + i \: \mathrm{sgn}(s) \pv{\frac{1}{\omega}} \Big)
}
\end{aligned}$$
|