summaryrefslogtreecommitdiff
path: root/content/know/concept/impulse-response/index.pdc
blob: 012a2c3cb90b6d2447720bc96ca58f087abdc312 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
title: "Impulse response"
firstLetter: "I"
publishDate: 2021-03-09
categories:
- Mathematics
- Physics

date: 2021-03-09T20:34:38+01:00
draft: false
markup: pandoc
---

# Impulse response

The **impulse response** $u_p(t)$ of a system whose behaviour is described
by a linear operator $\hat{L}$, is defined as the reponse of the system
when forced by the [Dirac delta function](/know/concept/dirac-delta-function/) $\delta(t)$:

$$\begin{aligned}
    \boxed{
        \hat{L} \{ u_p(t) \} = \delta(t)
    }
\end{aligned}$$

This can be used to find the response $u(t)$ of $\hat{L}$ to
*any* forcing function $f(t)$, i.e. not only $\delta(t)$,
by simply taking the convolution with $u_p(t)$:

$$\begin{aligned}
    \boxed{
        \hat{L} \{ u(t) \} = f(t)
        \quad \implies \quad
        u(t) = (f * u_p)(t)
    }
\end{aligned}$$

*__Proof.__ Starting from the definition of $u_p(t)$,
we shift the argument by some constant $\tau$,
and multiply both sides by the constant $f(\tau)$:*

$$\begin{aligned}
    \hat{L} \{ u_p(t - \tau) \} &= \delta(t - \tau)
    \\
    \hat{L} \{ f(\tau) \: u_p(t - \tau) \} &= f(\tau) \: \delta(t - \tau)
\end{aligned}$$

*Where $f(\tau)$ can be moved inside using the
linearity of $\hat{L}$. Integrating over $\tau$ then gives us:*

$$\begin{aligned}
    \int_0^\infty \hat{L} \{ f(\tau) \: u_p(t - \tau) \} \dd{\tau}
    &= \int_0^\infty f(\tau) \: \delta(t - \tau) \dd{\tau}
    = f(t)
\end{aligned}$$

*The integral and $\hat{L}$ are operators of different variables, so we reorder them:*

$$\begin{aligned}
    \hat{L} \int_0^\infty f(\tau) \: u_p(t - \tau) \dd{\tau}
    &= (f * u_p)(t) = \hat{L}\{ u(t) \} = f(t)
\end{aligned}$$

*__Q.E.D.__*