summaryrefslogtreecommitdiff
path: root/content/know/concept/ito-calculus/index.pdc
blob: 576e09a4516f31785d60462285c881c07d9314b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
title: "Itō calculus"
firstLetter: "I"
publishDate: 2021-11-06
categories:
- Mathematics

date: 2021-11-06T14:34:00+01:00
draft: false
markup: pandoc
---

# Itō calculus

Given two time-indexed [random variables](/know/concept/random-variable/)
(i.e. stochastic processes) $F_t$ and $G_t$,
then consider the following random variable $X_t$,
where $B_t$ is the [Wiener process](/know/concept/wiener-process/):

$$\begin{aligned}
    X_t
    = X_0 + \int_0^t F_s \dd{s} + \int_0^t G_s \dd{B_s}
\end{aligned}$$

Where the latter is an [Itō integral](/know/concept/ito-integral/),
assuming $G_t$ is Itō-integrable.
We call $X_t$ an **Itō process** if $F_t$ is locally integrable,
and the initial condition $X_0$ is known,
i.e. $X_0$ is $\mathcal{F}_0$-measurable,
where $\mathcal{F}_t$ is the [filtration](/know/concept/sigma-algebra/)
to which $F_t$, $G_t$ and $B_t$ are adapted.
The above definition of $X_t$ is often abbreviated as follows,
where $X_0$ is implicit:

$$\begin{aligned}
    \dd{X_t}
    = F_t \dd{t} + G_t \dd{B_t}
\end{aligned}$$

Typically, $F_t$ is referred to as the **drift** of $X_t$,
and $G_t$ as its **intensity**.
Now, consider the following **Itō stochastic differential equation** (SDE),
where $\xi_t = \dv*{B_t}{t}$ is white noise:

$$\begin{aligned}
    \dv{X_t}{t}
    = f(X_t, t) + g(X_t, t) \: \xi_t
\end{aligned}$$

An Itō process $X_t$ is said to satisfy this equation
if $f(X_t, t) = F_t$ and $g(X_t, t) = G_t$,
in which case $X_t$ is also called an **Itō diffusion**.

Because the Itō integral of $G_t$ is a
[martingale](/know/concept/martingale/),
it does not contribute to the mean of $X_t$:

$$\begin{aligned}
    \mathbf{E}[X_t]
    = \int_0^t \mathbf{E}[F_s] \dd{s}
\end{aligned}$$


## Itō's lemma

Classically, given $y \equiv h(x(t), t)$,
the chain rule of differentiation states that:

$$\begin{aligned}
    \dd{y}
    = \pdv{h}{t} \dd{t} + \pdv{h}{x} \dd{x}
\end{aligned}$$

However, for a stochastic process $Y_t \equiv h(X_t, t)$,
where $X_t$ is an Itō process,
the chain rule is modified to the following,
known as **Itō's lemma**:

$$\begin{aligned}
    \boxed{
        \dd{Y_t}
        = \pdv{h}{t} \dd{t} + \bigg( \pdv{h}{x} F_t + \frac{1}{2} G_t^2 \pdv[2]{h}{x} \bigg) \dd{t} + \pdv{h}{x} G_t \dd{B_t}
    }
\end{aligned}$$

<div class="accordion">
<input type="checkbox" id="proof-lemma"/>
<label for="proof-lemma">Proof</label>
<div class="hidden">
<label for="proof-lemma">Proof.</label>
We start by applying the classical chain rule,
but we go to second order in $x$.
This is also valid classically,
but there we would neglect all higher-order infinitesimals:

$$\begin{aligned}
    \dd{Y_t}
    = \pdv{h}{t} \dd{t} + \pdv{h}{x} \dd{X_t} + \frac{1}{2} \pdv[2]{h}{x} \dd{X_t}^2
\end{aligned}$$

But here we cannot neglect $\dd{X_t}^2$.
We insert the definition of an Itō process:

$$\begin{aligned}
    \dd{Y_t}
    &= \pdv{h}{t} \dd{t} + \pdv{h}{x} \Big( F_t \dd{t} + G_t \dd{B_t} \Big) + \frac{1}{2} \pdv[2]{h}{x} \Big( F_t \dd{t} + G_t \dd{B_t} \Big)^2
    \\
    &= \pdv{h}{t} \dd{t} + \pdv{h}{x} \Big( F_t \dd{t} + G_t \dd{B_t} \Big)
    + \frac{1}{2} \pdv[2]{h}{x} \Big( F_t^2 \dd{t}^2 + 2 F_t G_t \dd{t} \dd{B_t} + G_t^2 \dd{B_t}^2 \Big)
\end{aligned}$$

In the limit of small $\dd{t}$, we can neglect $\dd{t}^2$,
and as it turns out, $\dd{t} \dd{B_t}$ too:

$$\begin{aligned}
    \dd{t} \dd{B_t}
    &= (B_{t + \dd{t}} - B_t) \dd{t}
    \sim \dd{t} \mathcal{N}(0, \dd{t})
    \sim \mathcal{N}(0, \dd{t}^3)
    \longrightarrow 0
\end{aligned}$$

However, due to the scaling property of $B_t$,
we cannot ignore $\dd{B_t}^2$, which has order $\dd{t}$:

$$\begin{aligned}
    \dd{B_t}^2
    &= (B_{t + \dd{t}} - B_t)^2
    \sim \big( \mathcal{N}(0, \dd{t}) \big)^2
    \sim \chi^2_1(\dd{t})
    \longrightarrow \dd{t}
\end{aligned}$$

Where $\chi_1^2(\dd{t})$ is the generalized chi-squared distribution
with one term of variance $\dd{t}$.
</div>
</div>

The most important application of Itō's lemma
is to perform coordinate transformations,
to make the solution of a given Itō SDE easier.


## Coordinate transformations

The simplest coordinate transformation is a scaling of the time axis.
Defining $s \equiv \alpha t$, the goal is to keep the Itō process.
We know how to scale $B_t$, be setting $W_s \equiv \sqrt{\alpha} B_{s / \alpha}$.
Let $Y_s \equiv X_t$ be the new variable on the rescaled axis, then:

$$\begin{aligned}
    \dd{Y_s}
    = \dd{X_t}
    &= f(X_t) \dd{t} + g(X_t) \dd{B_t}
    \\
    &= \frac{1}{\alpha} f(Y_s) \dd{s} + \frac{1}{\sqrt{\alpha}} g(Y_s) \dd{W_s}
\end{aligned}$$

$W_s$ is a valid Wiener process,
and the other changes are small,
so this is still an Itō process.

To solve SDEs analytically, it is usually best
to have additive noise, i.e. $g = 1$.
This can be achieved using the **Lamperti transform**:
define $Y_t \equiv h(X_t)$, where $h$ is given by:

$$\begin{aligned}
    \boxed{
        h(x)
        = \int_{x_0}^x \frac{1}{g(y)} \dd{y}
    }
\end{aligned}$$

Then, using Itō's lemma, it is straightforward
to show that the intensity becomes $1$.
Note that the lower integration limit $x_0$ does not enter:

$$\begin{aligned}
    \dd{Y_t}
    &= \bigg( f(X_t) \: h'(X_t) + \frac{1}{2} g^2(X_t) \: h''(X_t) \bigg) \dd{t} + g(X_t) \: h'(X_t) \dd{B_t}
    \\
    &= \bigg( \frac{f(X_t)}{g(X_t)} - \frac{1}{2} g^2(X_t) \frac{g'(X_t)}{g^2(X_t)} \bigg) \dd{t} + \frac{g(X_t)}{g(X_t)} \dd{B_t}
    \\
    &= \bigg( \frac{f(X_t)}{g(X_t)} - \frac{1}{2} g'(X_t) \bigg) \dd{t} + \dd{B_t}
\end{aligned}$$

Similarly, we can eliminate the drift $f = 0$,
thereby making the Itō process a martingale.
This is done by defining $Y_t \equiv h(X_t)$, with $h(x)$ given by:

$$\begin{aligned}
    \boxed{
        h(x)
        = \int_{x_0}^x \exp\!\bigg( \!-\!\! \int_{x_1}^x \frac{2 f(y)}{g^2(y)} \dd{y} \bigg)
    }
\end{aligned}$$

The goal is to make the parenthesized first term (see above)
of Itō's lemma disappear, which this $h(x)$ does indeed do.
Note that $x_0$ and $x_1$ do not enter:

$$\begin{aligned}
    0
    &= f(x) \: h'(x) + \frac{1}{2} g^2(x) \: h''(x)
    \\
    &= \Big( f(x) - \frac{1}{2} g^2(x) \frac{2 f(x)}{g(x)} \Big) \exp\!\bigg( \!-\!\! \int_{x_1}^x \frac{2 f(y)}{g^2(y)} \dd{y} \bigg)
\end{aligned}$$



## References
1.  U.H. Thygesen,
    *Lecture notes on diffusions and stochastic differential equations*,
    2021, Polyteknisk Kompendie.