summaryrefslogtreecommitdiff
path: root/content/know/concept/ito-integral/index.pdc
blob: cbd4a91cbb794519e550c39cdc7741d0dabbc669 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
---
title: "Itō integral"
firstLetter: "I"
publishDate: 2021-11-06
categories:
- Mathematics

date: 2021-10-21T19:41:58+02:00
draft: false
markup: pandoc
---

# Itō integral

The **Itō integral** offers a way to integrate
a given [stochastic process](/know/concept/stochastic-process/) $G_t$
with respect to a [Wiener process](/know/concept/wiener-process/) $B_t$,
which is also a stochastic process.
The Itō integral $I_t$ of $G_t$ is defined as follows:

$$\begin{aligned}
    \boxed{
        I_t
        \equiv \int_a^b G_t \dd{B_t}
        \equiv \lim_{h \to 0} \sum_{t = a}^{t = b} G_t \big(B_{t + h} - B_t\big)
    }
\end{aligned}$$

Where have partitioned the time interval $[a, b]$ into steps of size $h$.
The above integral exists if $G_t$ and $B_t$ are adapted
to a common filtration $\mathcal{F}_t$,
and $\mathbf{E}[G_t^2]$ is integrable for $t \in [a, b]$.
If $I_t$ exists, $G_t$ is said to be **Itō-integrable** with respect to $B_t$.


## Motivation

Consider the following simple first-order differential equation for $X_t$,
for some function $f$:

$$\begin{aligned}
    \dv{X_t}{t}
    = f(X_t)
\end{aligned}$$

This can be solved numerically using the explicit Euler scheme
by discretizing it with step size $h$,
which can be applied recursively, leading to:

$$\begin{aligned}
    X_{t+h}
    \approx X_{t} + f(X_t) \: h
    \quad \implies \quad
    X_t
    \approx X_0 + \sum_{s = 0}^{s = t} f(X_s) \: h
\end{aligned}$$

In the limit $h \to 0$, this leads to the following unsurprising integral for $X_t$:

$$\begin{aligned}
    \int_0^t f(X_s) \dd{s}
    = \lim_{h \to 0} \sum_{s = 0}^{s = t} f(X_s) \: h
\end{aligned}$$

In contrast, consider the *stochastic differential equation* below,
where $\xi_t$ represents white noise,
which is informally the $t$-derivative
of the Wiener process $\xi_t = \dv*{B_t}{t}$:

$$\begin{aligned}
    \dv{X_t}{t}
    = g(X_t) \: \xi_t
\end{aligned}$$

Now $X_t$ is not deterministic,
since $\xi_t$ is derived from a random variable $B_t$.
If $g = 1$, we expect $X_t = X_0 + B_t$.
With this in mind, we introduce the **Euler-Maruyama scheme**:

$$\begin{aligned}
    X_{t+h}
    &= X_t + g(X_t) \: (\xi_{t+h} - \xi_t) \: h
    \\
    &= X_t + g(X_t) \: (B_{t+h} - B_t)
\end{aligned}$$

We would like to turn this into an integral for $X_t$, as we did above.
Therefore, we state:

$$\begin{aligned}
    X_t
    = X_0 + \int_0^t g(X_s) \dd{B_s}
\end{aligned}$$

This integral is *defined* as below,
analogously to the first, but with $h$ replaced by
the increment $B_{t+h} \!-\! B_t$ of a Wiener process.
This is an Itō integral:

$$\begin{aligned}
    \int_0^t g(X_s) \dd{B_s}
    \equiv \lim_{h \to 0} \sum_{s = 0}^{s = t} g(X_s) \big(B_{s + h} - B_s\big)
\end{aligned}$$

For more information about applying the Itō integral in this way,
see the [Itō calculus](/know/concept/ito-calculus/).


## Properties

Since $G_t$ and $B_t$ must be known (i.e. $\mathcal{F}_t$-adapted)
in order to evaluate the Itō integral $I_t$ at any given $t$,
it logically follows that $I_t$ is also $\mathcal{F}_t$-adapted.

Because the Itō integral is defined as the limit of a sum of linear terms,
it inherits this linearity.
Consider two Itō-integrable processes $G_t$ and $H_t$,
and two constants $v, w \in \mathbb{R}$:

$$\begin{aligned}
    \int_a^b v G_t + w H_t \dd{B_t}
    = v\! \int_a^b G_t \dd{B_t} +\: w\! \int_a^b H_t \dd{B_t}
\end{aligned}$$

By adding multiple summations,
the Itō integral clearly satisfies, for $a < b < c$:

$$\begin{aligned}
    \int_a^c G_t \dd{B_t}
    = \int_a^b G_t \dd{B_t} + \int_b^c G_t \dd{B_t}
\end{aligned}$$

A more interesting property is the **Itō isometry**,
which expresses the expectation of the square of an Itō integral of $G_t$
as a simpler "ordinary" integral of the expectation of $G_t^2$
(which exists by the definition of Itō-integrability):

$$\begin{aligned}
    \boxed{
        \mathbf{E} \bigg( \int_a^b G_t \dd{B_t} \bigg)^2
        = \int_a^b \mathbf{E} \big[ G_t^2 \big] \dd{t}
    }
\end{aligned}$$

<div class="accordion">
<input type="checkbox" id="proof-isometry"/>
<label for="proof-isometry">Proof</label>
<div class="hidden">
<label for="proof-isometry">Proof.</label>
We write out the left-hand side of the Itō isometry,
where eventually $h \to 0$:

$$\begin{aligned}
    \mathbf{E} \bigg[ \sum_{t = a}^{t = b} G_t (B_{t + h} \!-\! B_t) \bigg]^2
    &= \sum_{t = a}^{t = b} \sum_{s = a}^{s = b} \mathbf{E} \bigg[ G_t G_s (B_{t + h} \!-\! B_t) (B_{s + h} \!-\! B_s) \bigg]
\end{aligned}$$

In the particular case $t \ge s \!+\! h$,
a given term of this summation can be rewritten
as follows using the *law of total expectation*
(see [conditional expectation](/know/concept/conditional-expectation/)):

$$\begin{aligned}
    \mathbf{E} \Big[ G_t G_s (B_{t + h} \!-\! B_t) (B_{s + h} \!-\! B_s) \Big]
    = \mathbf{E} \bigg[ \mathbf{E} \Big[ G_t G_s (B_{t + h} \!-\! B_t) (B_{s + h} \!-\! B_s) \Big| \mathcal{F}_t \Big] \bigg]
\end{aligned}$$

Recall that $G_t$ and $B_t$ are adapted to $\mathcal{F}_t$:
at time $t$, we have information $\mathcal{F}_t$,
which includes knowledge of the realized values $G_t$ and $B_t$.
Since $t \ge s \!+\! h$ by assumption, we can simply factor out the known quantities:

$$\begin{aligned}
    \mathbf{E} \Big[ G_t G_s (B_{t + h} \!-\! B_t) (B_{s + h} \!-\! B_s) \Big]
    = \mathbf{E} \bigg[ G_t G_s (B_{s + h} \!-\! B_s) \: \mathbf{E} \Big[ (B_{t + h} \!-\! B_t) \Big| \mathcal{F}_t \Big] \bigg]
\end{aligned}$$

However, $\mathcal{F}_t$ says nothing about
the increment $(B_{t + h} \!-\! B_t) \sim \mathcal{N}(0, h)$,
meaning that the conditional expectation is zero:

$$\begin{aligned}
    \mathbf{E} \Big[ G_t G_s (B_{t + h} \!-\! B_t) (B_{s + h} \!-\! B_s) \Big]
    = 0
    \qquad \mathrm{for}\; t \ge s + h
\end{aligned}$$

By swapping $s$ and $t$, the exact same result can be obtained for $s \ge t \!+\! h$:

$$\begin{aligned}
    \mathbf{E} \Big[ G_t G_s (B_{t + h} \!-\! B_t) (B_{s + h} \!-\! B_s) \Big]
    = 0
    \qquad \mathrm{for}\; s \ge t + h
\end{aligned}$$

This leaves only one case which can be nonzero: $[t, t\!+\!h] = [s, s\!+\!h]$.
Applying the law of total expectation again yields:

$$\begin{aligned}
    \mathbf{E} \bigg[ \sum_{t = a}^{t = b} G_t (B_{t + h} \!-\! B_t) \bigg]^2
    &= \sum_{t = a}^{t = b} \mathbf{E} \Big[ G_t^2 (B_{t + h} \!-\! B_t)^2 \Big]
    \\
    &= \sum_{t = a}^{t = b} \mathbf{E} \bigg[ \mathbf{E} \Big[ G_t^2 (B_{t + h} \!-\! B_t)^2 \Big| \mathcal{F}_t \Big] \bigg]
\end{aligned}$$

We know $G_t$, and the expectation value of $(B_{t+h} \!-\! B_t)^2$,
since the increment is normally distributed, is simply the variance $h$:

$$\begin{aligned}
    \mathbf{E} \bigg[ \sum_{t = a}^{t = b} G_t (B_{t + h} \!-\! B_t) \bigg]^2
    &= \sum_{t = a}^{t = b} \mathbf{E} \big[ G_t^2 \big] h
    \longrightarrow
    \int_a^b \mathbf{E} \big[ G_t^2 \big] \dd{t}
\end{aligned}$$
</div>
</div>

Furthermore, Itō integrals are [martingales](/know/concept/martingale/),
meaning that the average noise contribution is zero,
which makes intuitive sense,
since true white noise cannot be biased.

<div class="accordion">
<input type="checkbox" id="proof-martingale"/>
<label for="proof-martingale">Proof</label>
<div class="hidden">
<label for="proof-martingale">Proof.</label>
We will prove that an arbitrary Itō integral $I_t$ is a martingale.
Using additivity, we know that the increment $I_t \!-\! I_s$
is as follows, given information $\mathcal{F}_s$:

$$\begin{aligned}
    \mathbf{E} \big[ I_t \!-\! I_s | \mathcal{F}_s \big]
    = \mathbf{E} \bigg[ \int_s^t G_u \dd{B_u} \bigg| \mathcal{F}_s \bigg]
    = \lim_{h \to 0} \sum_{u = s}^{u = t} \mathbf{E} \Big[ G_u (B_{u + h} \!-\! B_u) \Big| \mathcal{F}_s \Big]
\end{aligned}$$

We rewrite this [conditional expectation](/know/concept/conditional-expectation/)
using the *tower property* for some $\mathcal{F}_u \supset \mathcal{F}_s$,
such that $G_u$ and $B_u$ are known, but $B_{u+h} \!-\! B_u$ is not:

$$\begin{aligned}
    \mathbf{E} \big[ I_t \!-\! I_s | \mathcal{F}_s \big]
    &= \lim_{h \to 0} \sum_{u = s}^{u = t}
    \mathbf{E} \bigg[ \mathbf{E} \Big[ G_u (B_{u + h} \!-\! B_u) \Big| \mathcal{F}_u \Big] \bigg| \mathcal{F}_s \bigg]
    = 0
\end{aligned}$$

We now have everything we need to calculate $\mathbf{E} [ I_t | \mathcal{F_s} ]$,
giving the martingale property:

$$\begin{aligned}
    \mathbf{E} \big[ I_t | \mathcal{F}_s \big]
    = \mathbf{E} \big[ I_s | \mathcal{F}_s \big] + \mathbf{E} \big[ I_t \!-\! I_s | \mathcal{F}_s \big]
    = I_s + \mathbf{E} \big[ I_t \!-\! I_s | \mathcal{F}_s \big]
    = I_s
\end{aligned}$$

For the existence of $I_t$,
we need $\mathbf{E}[G_t^2]$ to be integrable over the target interval,
so from the Itō isometry we have $\mathbf{E}[I]^2 < \infty$,
and therefore $\mathbf{E}[I] < \infty$,
so $I_t$ has all the properties of a Martingale,
since it is trivially $\mathcal{F}_t$-adapted.
</div>
</div>



## References
1.  U.H. Thygesen,
    *Lecture notes on diffusions and stochastic differential equations*,
    2021, Polyteknisk Kompendie.