1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
---
title: "Kramers-Kronig relations"
firstLetter: "K"
publishDate: 2021-02-25
categories:
- Mathematics
- Complex analysis
- Physics
- Optics
date: 2021-02-25T15:20:24+01:00
draft: false
markup: pandoc
---
# Kramers-Kronig relations
Let $\chi(t)$ be a complex function describing
the response of a system to an impulse $f(t)$ starting at $t = 0$.
The **Kramers-Kronig relations** connect the real and imaginary parts of $\chi(t)$,
such that one can be reconstructed from the other.
Suppose we can only measure $\chi_r(t)$ or $\chi_i(t)$:
$$\begin{aligned}
\chi(t) = \chi_r(t) + i \chi_i(t)
\end{aligned}$$
Assuming that the system was at rest until $t = 0$,
the response $\chi(t)$ cannot depend on anything from $t < 0$,
since the known impulse $f(t)$ had not started yet,
This principle is called **causality**, and to enforce it,
we use the [Heaviside step function](/know/concept/heaviside-step-function/)
$\Theta(t)$ to create a **causality test** for $\chi(t)$:
$$\begin{aligned}
\chi(t) = \chi(t) \: \Theta(t)
\end{aligned}$$
If we [Fourier transform](/know/concept/fourier-transform/) this equation,
then it will become a convolution in the frequency domain
thanks to the [convolution theorem](/know/concept/convolution-theorem/),
where $A$, $B$ and $s$ are constants from the FT definition:
$$\begin{aligned}
\tilde{\chi}(\omega)
%= \hat{\mathcal{F}}\{\chi_c(t) \: \Theta(t)\}
= (\tilde{\chi} * \tilde{\Theta})(\omega)
= B \int_{-\infty}^\infty \tilde{\chi}(\omega') \: \tilde{\Theta}(\omega - \omega') \dd{\omega'}
\end{aligned}$$
We look up the FT of the step function $\tilde{\Theta}(\omega)$,
which involves the signum function $\mathrm{sgn}(t)$,
the [Dirac delta function](/know/concept/dirac-delta-function/) $\delta$,
and the Cauchy principal value $\pv{}$.
We arrive at:
$$\begin{aligned}
\tilde{\chi}(\omega)
&= \frac{A B}{|s|} \: \pv{\int_{-\infty}^\infty \tilde{\chi}(\omega')
\Big( \pi \delta(\omega - \omega') + i \:\mathrm{sgn} \frac{1}{\omega - \omega'} \Big) \dd{\omega'}}
\\
&= \Big( \frac{1}{2} \frac{2 \pi A B}{|s|} \Big) \tilde{\chi}(\omega)
+ i \Big( \frac{\mathrm{sgn}(s)}{2 \pi} \frac{2 \pi A B}{|s|} \Big)
\: \pv{\int_{-\infty}^\infty \frac{\tilde{\chi}(\omega')}{\omega - \omega'} \dd{\omega'}}
\end{aligned}$$
From the definition of the Fourier transform we know that $2 \pi A B / |s| = 1$:
$$\begin{aligned}
\tilde{\chi}(\omega)
&= \frac{1}{2} \tilde{\chi}(\omega)
+ \mathrm{sgn}(s) \frac{i}{2 \pi} \: \pv{\int_{-\infty}^\infty \frac{\tilde{\chi}(\omega')}{\omega - \omega'} \dd{\omega'}}
\end{aligned}$$
We isolate this equation for $\tilde{\chi}(\omega)$
to get the final version of the causality test:
$$\begin{aligned}
\boxed{
\tilde{\chi}(\omega)
= - \mathrm{sgn}(s) \frac{i}{\pi} \: \pv{\int_{-\infty}^\infty \frac{\tilde{\chi}(\omega')}{\omega - \omega'} \dd{\omega'}}
}
\end{aligned}$$
By inserting $\tilde{\chi}(\omega) = \tilde{\chi}_r(\omega) + i \tilde{\chi}_i(\omega)$
and splitting the equation into real and imaginary parts,
we get the Kramers-Kronig relations:
$$\begin{aligned}
\boxed{
\begin{aligned}
\tilde{\chi}_r(\omega)
&= \mathrm{sgn}(s) \frac{1}{\pi} \: \pv{\int_{-\infty}^\infty \frac{\tilde{\chi}_i(\omega')}{\omega' - \omega} \dd{\omega'}}
\\
\tilde{\chi}_i(\omega)
&= - \mathrm{sgn}(s) \frac{1}{\pi} \: \pv{\int_{-\infty}^\infty \frac{\tilde{\chi}_r(\omega')}{\omega' - \omega} \dd{\omega'}}
\end{aligned}
}
\end{aligned}$$
If the time-domain response function $\chi(t)$ is real
(so far we have assumed it to be complex),
then we can take advantage of the fact that
the FT of a real function satisfies
$\tilde{\chi}(-\omega) = \tilde{\chi}^*(\omega)$, i.e. $\tilde{\chi}_r(\omega)$
is even and $\tilde{\chi}_i(\omega)$ is odd. We multiply the fractions by
$(\omega' + \omega)$ above and below:
$$\begin{aligned}
\tilde{\chi}_r(\omega)
&= \mathrm{sgn}(s) \bigg( \frac{1}{\pi} \: \pv{\int_{-\infty}^\infty \frac{\omega' \tilde{\chi}_i(\omega')}{{\omega'}^2 - \omega^2} \dd{\omega'}}
+ \frac{\omega}{\pi} \: \pv{\int_{-\infty}^\infty \frac{\tilde{\chi}_i(\omega')}{{\omega'}^2 - \omega^2} \dd{\omega'}} \bigg)
\\
\tilde{\chi}_i(\omega)
&= - \mathrm{sgn}(s) \bigg( \frac{1}{\pi} \: \pv{\int_{-\infty}^\infty \frac{\omega' \tilde{\chi}_r(\omega')}{{\omega'}^2 - \omega^2} \dd{\omega'}}
+ \frac{\omega}{\pi} \: \pv{\int_{-\infty}^\infty \frac{\tilde{\chi}_r(\omega')}{{\omega'}^2 - \omega^2} \dd{\omega'}} \bigg)
\end{aligned}$$
For $\tilde{\chi}_r(\omega)$, the second integrand is odd, so we can drop it.
Similarly, for $\tilde{\chi}_i(\omega)$, the first integrand is odd.
We therefore find the following variant of the Kramers-Kronig relations:
$$\begin{aligned}
\boxed{
\begin{aligned}
\tilde{\chi}_r(\omega)
&= \mathrm{sgn}(s) \frac{2}{\pi} \: \pv{\int_0^\infty \frac{\omega' \tilde{\chi}_i(\omega')}{{\omega'}^2 - \omega^2} \dd{\omega'}}
\\
\tilde{\chi}_i(\omega)
&= - \mathrm{sgn}(s) \frac{2 \omega}{\pi} \: \pv{\int_0^\infty \frac{\tilde{\chi}_r(\omega')}{{\omega'}^2 - \omega^2} \dd{\omega'}}
\end{aligned}
}
\end{aligned}$$
To reiterate: this version is only valid if $\chi(t)$ is real in the time domain.
## References
1. M. Wubs,
*Optical properties of solids: Kramers-Kronig relations*, 2013,
unpublished.
|