blob: a4be1ffcb76a849cd10ddd3897a99d44211bf341 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
---
title: "Laguerre polynomials"
firstLetter: "L"
publishDate: 2021-09-08
categories:
- Mathematics
date: 2021-09-08T17:00:48+02:00
draft: false
markup: pandoc
---
# Laguerre polynomials
The **Laguerre polynomials** are a set of useful functions that arise in physics.
They are the non-singular eigenfunctions $u(x)$ of **Laguerre's equation**,
with the corresponding eigenvalues $n$ being non-negative integers:
$$\begin{aligned}
\boxed{
x u'' + (1 - x) u' + n u = 0
}
\end{aligned}$$
The $n$th-order Laguerre polynomial $L_n(x)$
is given in the form of a *Rodrigues' formula* by:
$$\begin{aligned}
L_n(x)
&= \frac{1}{n!} \exp\!(x) \dv[n]{x} \big(x^n \exp\!(-x)\big)
\\
&= \frac{1}{n!} \Big( \dv{x} - 1 \Big)^n x^n
\end{aligned}$$
The first couple of Laguerre polynomials $L_n(x)$ are therefore as follows:
$$\begin{gathered}
L_0(x) = 1
\qquad \quad
L_1(x) = 1 - x
\qquad \quad
L_2(x) = \frac{1}{2} (x^2 - 4 x + 2)
\end{gathered}$$
Based on Laguerre's equation,
**Laguerre's generalized equation** is as follows,
with an arbitrary real (but usually integer) parameter $\alpha$,
and $n$ still a non-negative integer:
$$\begin{aligned}
\boxed{
x u'' + (\alpha + 1 - x) u' + n u = 0
}
\end{aligned}$$
Its solutions, denoted by $L_n^\alpha(x)$,
are the **generalized** or **associated Laguerre polynomials**,
which also have a Rodrigues' formula.
Note that if $\alpha = 0$ then $L_n^\alpha = L_n$:
$$\begin{aligned}
L_n^\alpha(x)
&= \frac{1}{n!} x^{-\alpha} \exp\!(x) \dv[n]{x} \big( x^{n + \alpha} \exp\!(-x) \big)
\\
&= \frac{x^{-\alpha}}{n!} \Big( \dv{x} - 1 \Big)^n x^{n + \alpha}
\end{aligned}$$
The first couple of associated Laguerre polynomials $L_n^\alpha(x)$ are therefore as follows:
$$\begin{aligned}
L_0^\alpha(x) = 1
\qquad
L_1^\alpha(x) = \alpha + 1 - x
\qquad
L_2^\alpha(x) = \frac{1}{2} (x^2 - 2 \alpha x - 4 x + \alpha^2 + 3 \alpha + 2)
\end{aligned}$$
And then more $L_n^\alpha$ can be computed quickly
using the following recurrence relation:
$$\begin{aligned}
\boxed{
L_{n + 1}^\alpha(x)
= \frac{(\alpha + 2 n + 1 - x) L_n^\alpha(x) - (\alpha + n) L_{n - 1}^\alpha(x)}{n + 1}
}
\end{aligned}$$
The derivatives are also straightforward to calculate
using the following relation:
$$\begin{aligned}
\boxed{
\dv[k]{x} L_n^\alpha(x)
= (-1)^k L_{n - k}^{\alpha + k}(x)
}
\end{aligned}$$
Noteworthy is that these polynomials (both normal and associated)
are all mutually orthogonal for $x \in [0, \infty[$,
with respect to the weight function $w(x) \equiv x^\alpha \exp\!(-x)$:
$$\begin{aligned}
\boxed{
\braket{L_m^\alpha}{w L_n^\alpha}
= \int_0^\infty L_m^\alpha(x) \: L_n^\alpha(x) \: w(x) \dd{x}
= \frac{\Gamma(n + \alpha + 1)}{n!} \delta_{nm}
}
\end{aligned}$$
Where $\delta_{nm}$ is the Kronecker delta.
Moreover, they form a basis in
the [Hilbert space](/know/concept/hilbert-space/)
of all functions $f(x)$ for which $\braket{f}{w f}$ is finite.
Any such $f$ can thus be expanded as follows:
$$\begin{aligned}
\boxed{
f(x)
= \sum_{n = 0}^\infty a_n L_n^\alpha(x)
= \sum_{n = 0}^\infty \frac{\braket{L_n}{w f}}{\braket{L_n}{w L_n}} L_n^\alpha(x)
}
\end{aligned}$$
Finally, the $L_n^\alpha(x)$ are related to
the [Hermite polynomials](/know/concept/hermite-polynomials/) $H_n(x)$ like so:
$$\begin{aligned}
H_{2n(x)} &= (-1)^n 2^{2n} n! \: L_n^{-1/2}(x^2)
\\
H_{2n + 1(x)} &= (-1)^n 2^{2n + 1} n! \: L_n^{1/2}(x^2)
\end{aligned}$$
|