1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
---
title: "Langmuir waves"
firstLetter: "L"
publishDate: 2021-10-30
categories:
- Physics
- Plasma physics
date: 2021-10-15T20:31:46+02:00
draft: false
markup: pandoc
---
# Langmuir waves
In plasma physics, **Langmuir waves** are oscillations in the electron density,
which may or may not propagate, depending on the temperature.
Assuming no [magnetic field](/know/concept/magnetic-field/) $\vb{B} = 0$,
no ion motion $\vb{u}_i = 0$ (since $m_i \gg m_e$),
and therefore no ion-electron momentum transfer,
the [two-fluid equations](/know/concept/two-fluid-equations/)
tell us that:
$$\begin{aligned}
m_e n_e \frac{\mathrm{D} \vb{u}_e}{\mathrm{D} t}
= q_e n_e \vb{E} - \nabla p_e
\qquad \quad
\pdv{n_e}{t} + \nabla \cdot (n_e \vb{u}_e) = 0
\end{aligned}$$
These are the electron momentum and continuity equations.
We also need [Gauss' law](/know/concept/maxwells-equations/):
$$\begin{aligned}
\varepsilon_0 \nabla \cdot \vb{E}
= q_e (n_e - n_i)
\end{aligned}$$
We split $n_e$, $\vb{u}_e$ and $\vb{E}$ into a base component
(subscript $0$) and a perturbation (subscript $1$):
$$\begin{aligned}
n_e
= n_{e0} + n_{e1}
\qquad \quad
\vb{u}_e
= \vb{u}_{e0} + \vb{u}_{e1}
\qquad \quad
\vb{E}
= \vb{E}_0 + \vb{E}_1
\end{aligned}$$
Where the perturbations $n_{e1}$, $\vb{u}_{e1}$ and $\vb{E}_1$ are very small,
and the equilibrium components $n_{e0}$, $\vb{u}_{e0}$ and $\vb{E}_0$
by definition satisfy:
$$\begin{aligned}
\pdv{n_{e0}}{t} = 0
\qquad
\pdv{\vb{u}_{e0}}{t} = 0
\qquad
\nabla n_{e0} = 0
\qquad
\vb{u}_{e0} = 0
\qquad
\vb{E}_0 = 0
\end{aligned}$$
We insert this decomposistion into the electron continuity equation,
arguing that $n_{e1} \vb{u}_{e1}$ is small enough to neglect, leading to:
$$\begin{aligned}
0
&= \pdv{(n_{e0} \!+\! n_{e1})}{t} + \nabla \cdot \Big( (n_{e0} \!+\! n_{e1}) \: (\vb{u}_{e0} \!+\! \vb{u}_{e1}) \Big)
\\
&= \pdv{n_{e1}}{t} + \nabla \cdot \Big( n_{e0} \vb{u}_{e1} + n_{e1} \vb{u}_{e1} \Big)
\\
&\approx \pdv{n_{e1}}{t} + \nabla \cdot (n_{e0} \vb{u}_{e1})
= \pdv{n_{e1}}{t} + n_{e0} \nabla \cdot \vb{u}_{e1}
\end{aligned}$$
Likewise, we insert it into Gauss' law,
and use the plasma's quasi-neutrality $n_i = n_{e0}$ to get:
$$\begin{aligned}
\varepsilon_0 \nabla \cdot \big( \vb{E}_0 \!+\! \vb{E}_1 \big)
= q_e (n_{e0} + n_{e1} - n_i)
\quad \implies \quad
\varepsilon_0 \nabla \cdot \vb{E}_1
= q_e n_{e1}
\end{aligned}$$
Since we are looking for linear waves,
we make the following ansatz for the perturbations:
$$\begin{aligned}
n_{e1}(\vb{r}, t)
&= n_{e1} \exp\!(i \vb{k} \cdot \vb{r} - i \omega t)
\\
\vb{u}_{e1}(\vb{r}, t)
&= \vb{u}_{e1} \exp\!(i \vb{k} \cdot \vb{r} - i \omega t)
\\
\vb{E}_1(\vb{r}, t)
&= \vb{E}_1 \:\exp\!(i \vb{k} \cdot \vb{r} - i \omega t)
\end{aligned}$$
Inserting this into the continuity equation and Gauss' law yields, respectively:
$$\begin{aligned}
- i \omega n_{e1} = - i n_{e0} \vb{k} \cdot \vb{u}_{e1}
\qquad \quad
-\! i \varepsilon_0 \vb{k} \cdot \vb{E}_1 = q_e n_{e1}
\end{aligned}$$
However, there are three unknowns $n_{e1}$, $\vb{u}_{e1}$ and $\vb{E}_1$,
so one more equation is needed.
## Cold Langmuir waves
We therefore turn to the electron momentum equation.
For now, let us assume that the electrons have no thermal motion,
i.e. the electron temperature $T_e = 0$, so that $p_e = 0$, leaving:
$$\begin{aligned}
m_e n_e \frac{\mathrm{D} \vb{u}_e}{\mathrm{D} t}
= q_e n_e \vb{E}
\end{aligned}$$
Inserting the decomposition then gives the following,
where we neglect $(\vb{u}_{e1} \cdot \nabla) \vb{u}_{e1}$
because $\vb{u}_{e1}$ is so small by assumption:
$$\begin{gathered}
m_e (n_{e0} \!+\! n_{e1}) \Big( \pdv{(\vb{u}_{e0} \!+\! \vb{u}_{e1})}{t}
+ \big( (\vb{u}_{e0} \!+\! \vb{u}_{e1}) \cdot \nabla \big) (\vb{u}_{e0} \!+\! \vb{u}_{e1}) \Big)
= q_e \big( n_{e0} \!+\! n_{e1} \big) \big( \vb{E}_0 \!+\! \vb{E}_1 \big)
\\
\implies \qquad
q_e \vb{E}_1
= m_e \Big( \pdv{\vb{u}_{e1}}{t} + \big(\vb{u}_{e1} \cdot \nabla \big) \vb{u}_{e1} \Big)
\approx m_e \pdv{\vb{u}_{e1}}{t}
\end{gathered}$$
And then inserting our plane-wave ansatz yields
the third equation we were looking for:
$$\begin{aligned}
-i \omega m_e \vb{u}_{e1} = q_e \vb{E}_1
\end{aligned}$$
Solving this system of three equations for $\omega^2$
gives the following dispersion relation:
$$\begin{aligned}
\omega^2
= \frac{\omega n_{e0}}{n_{e1}} \vb{k} \cdot \vb{u}_{e1}
= \frac{i \omega n_{e0} q_e}{\omega m_e n_{e1}} \vb{k} \cdot \vb{E}_1
= \frac{i n_{e0} n_{e1} q_e^2}{i \varepsilon_0 m_e n_{e1}}
= \frac{n_{e0} q_e^2}{\varepsilon_0 m_e}
\end{aligned}$$
This result is known as the **plasma frequency** $\omega_p$,
and describes the frequency of **cold Langmuir waves**,
otherwise known as **plasma oscillations**:
$$\begin{aligned}
\boxed{
\omega_p
= \sqrt{\frac{n_{0e} q_e^2}{\varepsilon_0 m_e}}
}
\end{aligned}$$
Note that this is a dispersion relation $\omega(k) = \omega_p$,
but that $\omega_p$ does not contain $k$.
This means that cold Langmuir waves do not propagate:
the oscillation is "stationary".
## Warm Langmuir waves
Next, we generalize this result to nonzero $T_e$,
in which case the pressure $p_e$ is involved:
$$\begin{aligned}
m_e n_{e0} \pdv{\vb{u}_{e1}}{t}
= q_e n_{e0} \vb{E}_1 - \nabla p_e
\end{aligned}$$
From the two-fluid thermodynamic equation of state,
we know that $\nabla p_e$ can be written as:
$$\begin{aligned}
\nabla p_e
= \gamma k_B T_e \nabla n_e
= \gamma k_B T_e \nabla (n_{e0} + n_{e1})
= \gamma k_B T_e \nabla n_{e1}
\end{aligned}$$
With this, insertion of our plane-wave ansatz
into the electron equation results in:
$$\begin{aligned}
-i \omega m_e n_{e0} \vb{u}_{e1} = q_e n_{e0} \vb{E}_1 - i \gamma k_B T_e n_{e1} \vb{k}
\end{aligned}$$
Which once again closes the system of three equations.
Solving for $\omega^2$ then gives:
$$\begin{aligned}
\omega^2
= \frac{\omega n_{e0}}{n_{e1}} \vb{k} \cdot \vb{u}_{e1}
&= \frac{i \omega n_{e0}}{\omega n_{e0} m_e n_{e1}} \vb{k} \cdot \Big( q_e n_{e0} \vb{E}_1 - i \gamma k_B T_e n_{e1} \vb{k} \Big)
\\
&= \frac{n_{e0} q_e^2}{\varepsilon_0 m_e} - \frac{i \omega}{\omega m_e n_{e1}} i \gamma k_B T_e n_{e1} \big(\vb{k} \cdot \vb{k}\big)
\end{aligned}$$
Recognizing the first term as the plasma frequency $\omega_p^2$,
we therefore arrive at the **Bohm-Gross dispersion relation** $\omega(\vb{k})$
for **warm Langmuir waves**:
$$\begin{aligned}
\boxed{
\omega^2
= \omega_p^2 + \frac{\gamma k_B T_e}{m_e} |\vb{k}|^2
}
\end{aligned}$$
This expression is typically quoted for 1D oscillations,
in which case $\gamma = 3$ and $k = |\vb{k}|$:
$$\begin{aligned}
\omega^2
= \omega_p^2 + \frac{3 k_B T_e}{m_e} k^2
\end{aligned}$$
Unlike for $T_e = 0$, these "warm" waves do propagate,
carrying information at group velocity $v_g$,
which, in the limit of large $k$, is given by:
$$\begin{aligned}
v_g
= \pdv{\omega}{k}
\to \sqrt{\frac{3 k_B T_e}{m_e}}
\end{aligned}$$
This is the root-mean-square velocity of the
[Maxwell-Boltzmann speed distribution](/know/concept/maxwell-boltzmann-distribution/),
meaning that information travels at the thermal velocity for large $k$.
## References
1. F.F. Chen,
*Introduction to plasma physics and controlled fusion*,
3rd edition, Springer.
2. M. Salewski, A.H. Nielsen,
*Plasma physics: lecture notes*,
2021, unpublished.
|