summaryrefslogtreecommitdiff
path: root/content/know/concept/lindhard-function/index.pdc
blob: d38dc2ecd9cd9734471fa42da4a64ea4aaf6db7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
---
title: "Lindhard function"
firstLetter: "L"
publishDate: 2021-10-12
categories:
- Physics
- Quantum mechanics

date: 2021-09-23T16:21:57+02:00
draft: false
markup: pandoc
---

# Lindhard function

We start from the [Kubo formula](/know/concept/kubo-formula/)
for the electron density operator $\hat{n}$,
which describes the change in $\expval{\hat{n}}$
due to a time-dependent perturbation $\hat{H}_1$:

$$\begin{aligned}
    \delta\expval{{\hat{n}}}(\vb{r}, t)
    = -\frac{i}{\hbar} \int_{-\infty}^\infty \Theta(t - t') \expval{\comm{\hat{n}_I(\vb{r}, t)}{\hat{H}_{1,I}(t')}}_0 \dd{t'}
\end{aligned}$$

Where $\Theta$ is the [Heaviside step function](/know/concept/heaviside-step-function/),
and the subscript $I$ refers to the [interaction picture](/know/concept/interaction-picture/).
Notice from the limits that the perturbation is switched on at $t = -\infty$.
Now, let us consider the following harmonic $\hat{H}_1$ in the Schrödinger picture:

$$\begin{aligned}
    \hat{H}_{1,S}(t)
    = g(t) \: \hat{V}_S
    \qquad
    g(t)
    \equiv \exp\!(- i \omega t) \exp\!(\eta t)
    \qquad
    \hat{V}_S
    \equiv \int_{-\infty}^\infty V(\vb{r}) \: \hat{n}(\vb{r}) \dd{\vb{r}}
\end{aligned}$$

Where $\eta$ is a tiny positive number,
which represents a gradual switching-on of $\hat{H}_1$,
eliminating transient effects
and helping the convergence of an integral later.

We assume that $V(\vb{r})$ varies slowly compared to the electrons' wavefunctions,
so we argue that $\hat{V}_S$ is practically time-independent,
because the total number of electrons is conserved,
and $\hat{n}$ is only weakly perturbed by $\hat{H}_1$.

Because $\hat{H}_1$ starts at $t = -\infty$,
we can always shift the time axis such that the point of interest is at $t = 0$.
We thus have, without loss of generality:

$$\begin{aligned}
    \delta\expval{{\hat{n}}}(\vb{r})
    = \delta\expval{{\hat{n}}}(\vb{r}, 0)
    &= -\frac{i}{\hbar} \int_{-\infty}^\infty \Theta(- t')
    \Big( \expval{\hat{n}_I \hat{V}_I}_0 - \expval{\hat{V}_I \hat{n}_I}_0 \Big) g(t') \dd{t'}
\end{aligned}$$

The expectation values $\expval{}_0$ are calculated for $\ket{0}$,
which was the state at $t = -\infty$.
Note that if $\ket{0}$ is an eigenstate of $\hat{H}_{0,S}$,
there is no difference which picture (Schrödinger or interaction) $\ket{0}$ is in,
because any operator $\hat{A}$ then satisfies:

$$\begin{aligned}
    \matrixel{0_I}{\hat{A}_I}{0_I}
    &= \matrixel**{0_S}{\exp\!(-i \hat{H}_{0,S} t / \hbar) \:\: \hat{A}_I \: \exp\!(i \hat{H}_{0,S} t / \hbar)}{0_S}
    \\
    &= \matrixel{0_S}{\hat{A}_I}{0_S} \:\exp\!\big(i (E_0\!-\!E_0) t / \hbar\big) 
    = \matrixel{0_S}{\hat{A}_I}{0_S}
\end{aligned}$$

Therefore, we will assume that $\ket{0}$ is an eigenstate of $\hat{H}_{0,S}$.
Next, we insert the identity operator $\hat{I} = \sum_{j} \ket{j} \bra{j}$,
where $\ket{j}$ are all the eigenstates of $\hat{H}_{0,S}$:

$$\begin{aligned}
    \delta\expval{\hat{n}}(\vb{r})
    &= -\frac{i}{\hbar} \sum_{j} \int \Theta(-t')
    \Big( \matrixel{0}{\hat{n}_I}{j} \matrixel{j}{\hat{V}_I}{0} - \matrixel{0}{\hat{V}_I}{j} \matrixel{j}{\hat{n}_I}{0} \Big) g(t') \dd{t'}
\end{aligned}$$

Using the fact that $\ket{0}$ and $\ket{j}$
are eigenstates of $\hat{H}_{0,S}$,
and that we chose $t = 0$, we find:

$$\begin{aligned}
    \matrixel{j}{\hat{V}_I(t')}{0}
    &= \matrixel{j}{\hat{V}_S}{0} \:\exp\!\big(i (E_j \!-\! E_0) t' / \hbar\big) 
    \\
    \matrixel{j}{\hat{n}_I(0)}{0}
    &= \matrixel{j}{\hat{n}_S(0)}{0} \:\exp\!(0 - 0)
    = \matrixel{j}{\hat{n}_S(0)}{0}
\end{aligned}$$

We define $\omega_{j0} \equiv (E_j \!-\! E_0)/\hbar$
and insert the above expressions into $\delta\expval{\hat{n}}$,
yielding:

$$\begin{aligned}
    \delta\expval{\hat{n}}(\vb{r})
    &= -\frac{i}{\hbar} \sum_{j} \bigg(
    \matrixel{0}{\hat{n}_S}{j} \matrixel{j}{\hat{V}_S}{0} \int \Theta(-t') \exp\!(i \omega_{j0} t') \: g(t') \dd{t'}
    \\
    &\qquad\qquad\:\,
    - \matrixel{0}{\hat{V}_S}{j} \matrixel{j}{\hat{n}_S}{0} \int \Theta(-t') \exp\!(-i \omega_{j0} t') \: g(t') \dd{t'} \bigg)
\end{aligned}$$

These integrals are [Fourier transforms](/know/concept/fourier-transform/),
and are straightforward to evaluate. The first is:

$$\begin{aligned}
    \int_{-\infty}^\infty \Theta(-t') \exp\!(i \omega_{j0} t') \: g(t') \dd{t'}
    &= \int_{-\infty}^0 \exp\!\big(\!-\! i (\omega - \omega_{j0}) t' + \eta t' \big) \dd{t'}
    \\
    &= \bigg[ \frac{\exp\!\big(\!-\! i (\omega - \omega_{j0}) t' + \eta t' \big)}{- i (\omega - \omega_{j0}) + \eta} \bigg]_{-\infty}^0
    \\
    &= \frac{1}{- i (\omega - \omega_{j0}) + \eta}
    = \frac{i}{\omega - \omega_{j0} + i \eta}
\end{aligned}$$

The other integral simply has the opposite sign in front of $\omega_{j0}$.
We thus arrive at:

$$\begin{aligned}
    \delta\expval{\hat{n}}(\vb{r}, \omega)
    &= \frac{1}{\hbar} \sum_{j} \bigg(
    \frac{\matrixel{0}{\hat{n}_S}{j} \matrixel{j}{\hat{V}_S}{0}}{\omega - \omega_{j0} + i \eta}
    - \frac{\matrixel{0}{\hat{V}_S}{j} \matrixel{j}{\hat{n}_S}{0}}{\omega + \omega_{j0} + i \eta} \bigg)
\end{aligned}$$

Inserting the definition $\hat{V}_S = \int V(\vb{r}') \:\hat{n}(\vb{r}') \dd{\vb{r}'}$
leads us to the following formula for $\delta\expval{\hat{n}}$,
which has the typical form of a linear response,
with response function $\chi$:

$$\begin{aligned}
    \boxed{
        \begin{gathered}
            \delta{n}(\vb{r}, \omega)
            = \int_{-\infty}^\infty \chi(\vb{r}, \vb{r'}, \omega) \: V(\vb{r}') \dd{\vb{r}'}
            \qquad\quad \mathrm{where}
            \\
            \chi(\vb{r}, \vb{r'}, \omega)
            = \sum_{j} \bigg( \frac{\matrixel{0}{\hat{n}_S(\vb{r})}{j} \matrixel{j}{\hat{n}_S(\vb{r}')}{0}}{(\omega + i \eta) \hbar - E_j + E_0}
            - \frac{\matrixel{0}{\hat{n}_S(\vb{r}')}{j} \matrixel{j}{\hat{n}_S(\vb{r})}{0}}{(\omega + i \eta) \hbar + E_j - E_0} \bigg)
        \end{gathered}
    }
\end{aligned}$$

By definition, $\ket{j}$ are eigenstates
of the many-electron Hamiltonian $\hat{H}_{0,S}$,
which is only solvable if we crudely neglect
any and all electron-electron interactions.
Therefore, to continue, we neglect those interactions.
According to tradition, we then rename $\chi$ to $\chi_0$.

The well-known ground state of a non-interacting electron gas
is the Fermi sea $\ket{\mathrm{FS}}$, given below,
together with $\hat{n}_S$ in the language of the
[second quantization](/know/concept/second-quantization/):

$$\begin{aligned}
    \ket{\mathrm{FS}}
    = \prod_\alpha \hat{c}_\alpha^\dagger \ket{0}
    \qquad \quad
    \hat{n}_S(\vb{r})
    = \hat{\Psi}{}^\dagger(\vb{r}) \hat{\Psi}(\vb{r})
    = \sum_{\alpha \beta} \psi_\alpha^*(\vb{r}) \psi_\beta(\vb{r})\: \hat{c}_\alpha^\dagger \hat{c}_\beta
\end{aligned}$$

For now, we ignore thermal excitations,
i.e. we set the temperature $T = 0$.
In $\chi_0 = \chi$, we thus insert the above $\hat{n}_S$,
and replace $\ket{0}$ with $\ket{\mathrm{FS}}$, yielding:

$$\begin{aligned}
    \matrixel{0}{\hat{n}_S}{j}
    \quad\longrightarrow\quad \matrixel**{\mathrm{FS}}{\hat{\Psi}{}^\dagger \hat{\Psi}}{j}
    = \sum_{\alpha \beta} \psi_\alpha^* \psi_\beta \matrixel**{\mathrm{FS}}{\hat{c}_\alpha^\dagger \hat{c}_\beta}{j}
\end{aligned}$$

This inner product is only nonzero if
$\ket{j} = \hat{c}_a \hat{c}_b^\dagger \ket{\mathrm{FS}}$
with $a = \alpha$ and $b = \beta$,
or in other words,
only if $\ket{j}$ is a single-electron excitation of $\ket{\mathrm{FS}}$.
Furthermore, in $\ket{\mathrm{FS}}$,
$\alpha$ must be filled, and $\beta$ must be empty.
Let $f_\alpha \in \{0,1\}$ be the occupation number of orbital $\alpha$, then:

$$\begin{aligned}
    \matrixel{0}{\hat{n}_S}{j}
    \longrightarrow \sum_{\alpha \beta} \psi_\alpha^* \psi_\beta \: f_\alpha (1 - f_\beta) \: \delta_{a \alpha} \delta_{b \beta}
\end{aligned}$$

In $\chi_0$, the sum over $j$ becomes a sum over $a$ and $b$
(this implicitly eliminates all $\ket{j}$ that are not single-electron excitations),
and $E_j\!-\!E_0$ becomes the cost of the excitation $\epsilon_b \!-\! \epsilon_a$,
where $\epsilon_a$ is the energy of orbital $a$.
Therefore, we find:

$$\begin{aligned}
    \chi_0
    &= \sum_{a b} \bigg( \sum_{\alpha \beta \kappa \mu} f_\alpha (1 \!-\! f_\beta) f_\kappa (1 \!-\! f_\mu)
    \frac{\psi_\alpha^*(\vb{r}) \psi_\beta(\vb{r}) \psi_\kappa(\vb{r}') \psi_\mu^*(\vb{r'})}{(\omega + i \eta) \hbar - \epsilon_b + \epsilon_a}
    \delta_{a \alpha} \delta_{b \beta} \delta_{a \kappa} \delta_{b \mu}
    \\
    &\qquad\:\:\: - \sum_{\alpha \beta \kappa \mu} f_\alpha (1 \!-\! f_\beta) f_\kappa (1 \!-\! f_\mu)
    \frac{\psi_\alpha^*(\vb{r'}) \psi_\beta(\vb{r'}) \psi_\kappa(\vb{r}) \psi_\mu^*(\vb{r})}{(\omega + i \eta) \hbar + \epsilon_b - \epsilon_a}
    \delta_{a \alpha} \delta_{b \beta} \delta_{a \kappa} \delta_{b \mu} \bigg)
    \\
    &= \sum_{a b} \bigg( f_a^2 (1 \!-\! f_b)^2
    \frac{\psi_a^*(\vb{r}) \psi_b(\vb{r}) \psi_a(\vb{r}') \psi_b^*(\vb{r'})}{(\omega + i \eta) \hbar - \epsilon_b + \epsilon_a}
    \\
    &\qquad\:\: - f_a^2 (1 \!-\! f_b)^2
    \frac{\psi_a^*(\vb{r'}) \psi_b(\vb{r'}) \psi_a(\vb{r}) \psi_b^*(\vb{r})}{(\omega + i \eta) \hbar + \epsilon_b - \epsilon_a}
    \bigg)
\end{aligned}$$

Because $f_a, f_b \in \{0, 1\}$ when $T = 0$, we know that $f_a^2 (1 \!-\! f_b)^2 = f_a (1 \!-\! f_b)$.
We then swap the indices $a$ and $b$ in the second term, leading to:

$$\begin{aligned}
    \chi_0
    &= \sum_{a b} \Big( f_a (1 \!-\! f_b) - f_b (1 \!-\! f_a) \Big)
    \frac{\psi_a^*(\vb{r}) \psi_b(\vb{r}) \psi_a(\vb{r}') \psi_b^*(\vb{r'})}{(\omega + i \eta) \hbar - \epsilon_b + \epsilon_a}
    \\
    &= \sum_{a b} \Big( f_a - f_b \Big)
    \frac{\psi_a^*(\vb{r}) \psi_b(\vb{r}) \psi_a(\vb{r}') \psi_b^*(\vb{r'})}{(\omega + i \eta) \hbar - \epsilon_b + \epsilon_a}
\end{aligned}$$

To proceed, we make the radical assumption that $\vb{H}_{0,S}$
has continuous translational symmetry,
or in other words, that the external potential is uniform in space.
Clearly, this is not realistic,
so our conclusions will be more qualitative than quantitative.

In that case, the wavefunction of a non-interacting particle is simply a plane wave,
so we insert $\psi_a(\vb{r}) = \exp\!(i \vb{k}_a \cdot \vb{r})$
and $\psi_b(\vb{r}) = \exp\!(i \vb{k}_b \cdot \vb{r})$, yielding:

$$\begin{aligned}
    \chi_0
    &= \sum_{a b} \Big( f_a - f_b \Big)
    \frac{\exp\!\big( \!-\! i \vb{k}_a \cdot \vb{r} + i \vb{k}_b \cdot \vb{r} + i \vb{k}_a \cdot \vb{r}' - i \vb{k}_b \cdot \vb{r}' \big)}
    {(\omega + i \eta) \hbar - \epsilon_b + \epsilon_a}
    \\
    &= \sum_{a b} \Big( f_a - f_b \Big)
    \frac{\exp\!\big( \!-\! i (\vb{k}_a \!-\! \vb{k}_b) \cdot (\vb{r} \!-\! \vb{r}')\big)}
    {(\omega + i \eta) \hbar - \epsilon_b + \epsilon_a}
\end{aligned}$$

Here, we see that $\chi_0$ only depends on the differences
$\vb{r}\!-\!\vb{r}'$ and $\vb{k}_a\!-\!\vb{k}_b$.
Therefore, we define $\vb{q}' \equiv \vb{k}_b\!-\!\vb{k}_a$
and rename $\vb{k}_a \to \vb{k}$.
We thus have:

$$\begin{aligned}
    \chi_0(\vb{r}\!-\!\vb{r}')
    &= \sum_{\vb{k} \vb{q}'} \Big( f_k - f_{k+q'} \Big)
    \frac{\exp\!\big( i \vb{q'} \cdot (\vb{r} \!-\! \vb{r}')\big)}
    {(\omega + i \eta) \hbar - \epsilon_{k+q'} + \epsilon_k}
\end{aligned}$$

The summation goes over all $\vb{k}$ and $\vb{q}'$
where $\vb{k}$ is inside the Fermi sphere, and $\vb{k}\!+\!\vb{q}'$ is outside.
Let $k_F$ be the Fermi radius,
then we convert this sum into an integral,
which means introducing a factor of $1/(2 \pi)^{3}$
as usual in solid state physics:

$$\begin{aligned}
    \chi_0(\vb{r})
    &= \sum_{\substack{|\vb{k}| < k_F \\ |\vb{k}+\vb{q}'| > k_F}}
    \frac{(f_k - f_{k+q'}) \exp\!\big( i \vb{q}' \cdot \vb{r} \big)}
    {(\omega + i \eta) \hbar - \epsilon_{k+q'} + \epsilon_k}
    \\
    &= \frac{1}{(2 \pi)^3} \iint_{\substack{|\vb{k}| < k_F \\ |\vb{k}+\vb{q}'| > k_F}}
    \frac{(f_k - f_{k+q'}) \exp\!\big( i \vb{q}' \cdot \vb{r} \big)}
    {(\omega + i \eta) \hbar - \epsilon_{k+q'} + \epsilon_k} \dd{\vb{k}} \dd{\vb{q}'}
\end{aligned}$$

Fourier transforming the position $\vb{r}$ into the wavevector $\vb{q}$,
we recognize an integral that can be evaluated
to a [Dirac delta function](/know/concept/dirac-delta-function/) $\delta(\vb{q})$:

$$\begin{aligned}
    \chi_0(\vb{q})
    &= \frac{1}{(2 \pi)^3} \int_{-\infty}^\infty \iint_{\substack{|\vb{k}| < k_F \\ |\vb{k}+\vb{q}'| > k_F}}
    \frac{(f_k - f_{k+q'}) \exp\!\big( i (\vb{q}' \!-\! \vb{q}) \cdot \vb{r} \big)}{(\omega + i \eta) \hbar - \epsilon_{k+q'} + \epsilon_k}
    \dd{\vb{k}} \dd{\vb{q}'} \dd{\vb{r}}
    \\
    &= \iint_{\substack{|\vb{k}| < k_F \\ |\vb{k}+\vb{q}'| > k_F}}
    \frac{(f_k - f_{k+q'}) \:\delta(\vb{q}'\!-\!\vb{q})}{(\omega + i \eta) \hbar - \epsilon_{k+q'} + \epsilon_k} \dd{\vb{k}} \dd{\vb{q}'}
\end{aligned}$$

This delta functions eliminates the integral over $\vb{q}'$,
giving the following linear response $\chi_0$
of a non-interacting electron gas in a uniform potential:

$$\begin{aligned}
    \boxed{
        \chi_0(\vb{q}, \omega)
        = \int_{\substack{|\vb{k}| < k_F \\ |\vb{k}+\vb{q}| > k_F}}
        \frac{f_k - f_{k+q}}{(\omega + i \eta) \hbar - \epsilon_{k+q} + \epsilon_k} \dd{\vb{k}}
    }
\end{aligned}$$

The resulting electron density change $\delta{\expval{\hat{n}}}$ is as follows,
where we use the [convolution theorem](/know/concept/convolution-theorem/)
to convert the convolution in $\vb{r}$-space into a product in $\vb{q}$-space:

$$\begin{gathered}
    \delta\expval{\hat{n}}(\vb{r}, \omega)
    = \int_{-\infty}^\infty \chi_0(\vb{r}\!-\!\vb{r}', \omega) \: V(\vb{r}') \dd{r'}
    \\
    \implies \qquad
    \boxed{
        \delta\expval{\hat{n}}(\vb{q}, \omega)
        = \chi_0(\vb{q}, \omega) \: V(\vb{q})
    }
\end{gathered}$$

So far, we have neglected electron-electron interactions,
but now we approximately correct this.
We split the effective potential $\vb{V}_\mathrm{eff}$ felt by the electrons
into the external potential $V_\mathrm{ext}$
and the internal interactions $V_\mathrm{int}$,
such that:

$$\begin{aligned}
    V_\mathrm{eff}(\vb{r})
    = V_\mathrm{ext} + V_\mathrm{int}
\end{aligned}$$

We approximate $V_\mathrm{int}$ as follows,
where $V_{ee}$ represents electron-electron interactions:

$$\begin{aligned}
    V_\mathrm{int}(\vb{r})
    \approx \int_{-\infty}^\infty V_{ee}(\vb{r} \!-\! \vb{r}') \: \delta{n}(\vb{r}') \dd{\vb{r}'}
    \qquad\quad
    V_{ee}(\vb{r} \!-\! \vb{r}')
    = \frac{e^2}{4 \pi \varepsilon_0} \frac{1}{|\vb{r} - \vb{r}'|}
\end{aligned}$$

Consequently, $V_\mathrm{int}$ satisfies Poisson's equation,
which has a well-known Fourier transform:

$$\begin{aligned}
    \nabla^2 V_\mathrm{int}(\vb{r})
    = - \frac{\delta{n}(\vb{r})}{\varepsilon_0}
    \quad \implies \quad
    V_\mathrm{int}(\vb{q})
    = \frac{e^2}{\varepsilon_0 |\vb{q}|^2} \delta{n}(\vb{q})
\end{aligned}$$

Meanwhile, from all of the above calculations,
we can write $\delta{n}$ as follows,
where $\chi$ and $\chi_0$ are the
(unknown) interacting and (known) non-interacting response functions:

$$\begin{aligned}
    \delta{n}(\vb{q})
    = \chi V_\mathrm{ext}
    \approx \chi_0 V_\mathrm{eff}
\end{aligned}$$

Keep in mind that we are treating interactions as a perturbation to $V_\mathrm{ext}$,
therefore $V_\mathrm{ext} \approx V_\mathrm{eff}$.
With this, $V_\mathrm{eff}$ becomes as follows in $\vb{q}$-space,
where we have used the convolution theorem
to get the product $\delta{n} (\vb{q}) V_{ee}(\vb{q})$:

$$\begin{aligned}
    V_\mathrm{eff}(\vb{q})
    = V_\mathrm{ext} + \chi_0 V_\mathrm{eff} V_{ee}
    \qquad \quad
    V_{ee}(\vb{q})
    = \frac{e^2}{\varepsilon_0 |\vb{q}|^2}
\end{aligned}$$

Isolating this equation for $V_\mathrm{ext}$
yields the definition of the relative permittivity $\varepsilon_r$:

$$\begin{aligned}
    V_\mathrm{ext}
    = (1 - \chi_0 V_{ee}) V_\mathrm{eff}
    \equiv \varepsilon_r V_\mathrm{eff}
\end{aligned}$$

Therefore, by inserting all the above expressions,
we arrive at the following dielectric function $\varepsilon_r$
for a non-interacting electron gas in a uniform potential:

$$\begin{aligned}
    \boxed{
        \varepsilon_r(\vb{q}, \omega)
        = 1 - \frac{e^2}{\varepsilon_0 |\vb{q}|^2} \sum_{k} \frac{f_{k-q} - f_k}{\hbar (\omega + i \eta) + E_{k-q} - E_k}
    }
\end{aligned}$$



## References
1.  K.S. Thygesen,
    *Advanced solid state physics: linear response theory*,
    2013, unpublished.
2.  H. Bruus, K. Flensberg,
    *Many-body quantum theory in condensed matter physics*,
    2016, Oxford.
3.  G. Grosso, G.P. Parravicini,
    *Solid state physics*,
    2nd edition, Elsevier.