summaryrefslogtreecommitdiff
path: root/content/know/concept/lindhard-function/index.pdc
blob: 8af7416eabe50fe8bd10458b3374c956fb2f93e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
---
title: "Lindhard function"
firstLetter: "L"
publishDate: 2022-01-24 # Originally 2021-10-12, major rewrite
categories:
- Physics
- Quantum mechanics

date: 2021-09-23T16:21:57+02:00
draft: false
markup: pandoc
---

# Lindhard function

The **Lindhard function** describes the response of
[jellium](/know/concept/jellium) (i.e. a free electron gas)
to an external perturbation, and is a quantum-mechanical
alternative to the [Drude model](/know/concept/drude-model/).

We start from the [Kubo formula](/know/concept/kubo-formula/)
for the electron density operator $\hat{n}$,
which describes the change in $\expval{\hat{n}}$
due to a time-dependent perturbation $\hat{H}_1$:

$$\begin{aligned}
    \delta\expval{{\hat{n}}}(\vb{r}, t)
    = -\frac{i}{\hbar} \int_{-\infty}^\infty \Theta(t - t') \expval{\comm{\hat{n}_I(\vb{r}, t)}{\hat{H}_{1,I}(t')}}_0 \dd{t'}
\end{aligned}$$

Where the subscript $I$ refers to the [interaction picture](/know/concept/interaction-picture/),
and the expectation $\expval{}_0$ is for
a thermal equilibrium before the perturbation was applied.
Now consider a harmonic $\hat{H}_1$:

$$\begin{aligned}
    \hat{H}_{1,S}(t)
    = e^{i (\omega + i \eta) t} \int_{-\infty}^\infty U(\vb{r}) \: \hat{n}_S(\vb{r}) \dd{\vb{r}}
\end{aligned}$$

Where $S$ is the Schrödinger picture,
$\eta$ is a positive infinitesimal to ensure convergence later,
and $U(\vb{r})$ is an arbitrary potential function.
The Kubo formula becomes:

$$\begin{aligned}
    \delta\expval{{\hat{n}}}(\vb{r}, t)
    = \iint_{-\infty}^\infty \chi(\vb{r}, \vb{r}'; t, t') \: U(\vb{r}') \: e^{i (\omega + i \eta) t'} \dd{t'} \dd{\vb{r}'}
\end{aligned}$$

Here, $\chi$ is the density-density correlation function,
i.e. a two-particle [Green's function](/know/concept/greens-functions/):

$$\begin{aligned}
    \chi(\vb{r}, \vb{r}'; t, t')
    \equiv - \frac{i}{\hbar} \Theta(t - t') \expval{\comm{\hat{n}_I(\vb{r}, t)}{\hat{n}_I(\vb{r}', t')}}_0
\end{aligned}$$

Let us assume that the unperturbed system (i.e. without $U$) is spatially uniform,
so that $\chi$ only depends on the difference $\vb{r} - \vb{r}'$.
We then take its [Fourier transform](/know/concept/fourier-transform/)
$\vb{r}\!-\!\vb{r}' \to \vb{q}$:

$$\begin{aligned}
    \chi(\vb{q}; t, t')
    &= \int_{-\infty}^\infty \chi(\vb{r} - \vb{r}'; t, t') \: e^{- i \vb{q} \cdot (\vb{r} - \vb{r}')} \dd{\vb{r}}
    \\
    &= -\frac{i}{\hbar} \frac{\Theta(t \!-\! t')}{(2 \pi)^{2D}} \iiint
    \expval{\comm{\hat{n}_I(\vb{q}_1, t)}{\hat{n}_I(\vb{q}_2, t')}}_0
    \: e^{i \vb{q}_1 \cdot \vb{r}} e^{i \vb{q}_2 \cdot \vb{r}'} e^{- i \vb{q} \cdot (\vb{r} - \vb{r}')} \dd{\vb{q}_1} \dd{\vb{q}_2} \dd{\vb{r}}
\end{aligned}$$

Where both $\hat{n}_I$ have been written as inverse Fourier transforms,
giving a factor $(2 \pi)^{-2 D}$, with $D$ being the number of spatial dimensions.
We rearrange to get a [Dirac delta function](/know/concept/dirac-delta-function/) $\delta$:

$$\begin{aligned}
    \chi(\vb{q}; t, t')
    &= -\frac{i}{\hbar} \frac{\Theta(t \!-\! t')}{(2 \pi)^{2D}} \iiint
    \expval{\comm{\hat{n}_I(\vb{q}_1, t)}{\hat{n}_I(\vb{q}_2, t')}}_0
    \: e^{i (\vb{q}_1 - \vb{q}) \cdot \vb{r}} e^{i (\vb{q}_2 + \vb{q}) \cdot \vb{r}'} \dd{\vb{q}_1} \dd{\vb{q}_2} \dd{\vb{r}}
    \\
    &= -\frac{i}{\hbar} \frac{\Theta(t \!-\! t')}{(2 \pi)^D} \iint
    \expval{\comm{\hat{n}_I(\vb{q}_1, t)}{\hat{n}_I(\vb{q}_2, t')}}_0
    \: \delta(\vb{q}_1 \!-\! \vb{q}) \: e^{i (\vb{q}_2 + \vb{q}) \cdot \vb{r}'} \dd{\vb{q}_1} \dd{\vb{q}_2}
    \\
    &= -\frac{i}{\hbar} \frac{\Theta(t \!-\! t')}{(2 \pi)^D} \int
    \expval{\comm{\hat{n}_I(\vb{q}, t)}{\hat{n}_I(\vb{q}_2, t')}}_0
    \: e^{i (\vb{q}_2 + \vb{q}) \cdot \vb{r}'} \dd{\vb{q}_2}
\end{aligned}$$

On the left, $\vb{r}'$ does not appear, so it must also disappear on the right.
If we choose an arbitrary (hyper)cube of volume $V$ in real space,
then clearly $\int_V \dd{\vb{r}'} = V$. Therefore:

$$\begin{aligned}
    \chi(\vb{q}; t, t')
    &= -\frac{i}{\hbar} \frac{\Theta(t \!-\! t')}{(2 \pi)^D} \frac{1}{V} \int_V \int_{-\infty}^\infty
    \expval{\comm{\hat{n}_I(\vb{q}, t)}{\hat{n}_I(\vb{q}_2, t')}}_0
    \: e^{i (\vb{q}_2 + \vb{q}) \cdot \vb{r}'} \dd{\vb{q}_2} \dd{\vb{r}'}
\end{aligned}$$

For $V \to \infty$ we get a Dirac delta function,
but in fact the conclusion holds for finite $V$ too:

$$\begin{aligned}
    \chi(\vb{q}; t, t')
    &= -\frac{i}{\hbar} \Theta(t \!-\! t') \frac{1}{V} \int_{-\infty}^\infty
    \expval{\comm{\hat{n}_I(\vb{q}, t)}{\hat{n}_I(\vb{q}_2, t')}}_0 \: \delta(\vb{q}_2 \!+\! \vb{q}) \dd{\vb{q}_2}
    \\
    &= -\frac{i}{\hbar} \Theta(t \!-\! t') \frac{1}{V} \expval{\comm{\hat{n}_I(\vb{q}, t)}{\hat{n}_I(-\vb{q}, t')}}_0
\end{aligned}$$

Similarly, if the unperturbed Hamiltonian $\hat{H}_0$ is time-independent,
$\chi$ only depends on the time difference $t - t'$.
Note that $\delta{\expval{\hat{n}}}$ already has the form of a Fourier transform,
which gives us an opportunity to rewrite $\chi$
in the [Lehmann representation](/know/concept/lehmann-representation/):

$$\begin{aligned}
    \chi(\vb{q}, \omega)
    = \frac{1}{Z V} \sum_{\nu \nu'}
    \frac{\matrixel{\nu}{\hat{n}_S(\vb{q})}{\nu'} \matrixel{\nu'}{\hat{n}_S(-\vb{q})}{\nu}}{\hbar (\omega + i \eta) + E_\nu - E_{\nu'}}
    \Big( e^{-\beta E_\nu} - e^{- \beta E_{\nu'}} \Big)
\end{aligned}$$

Where $\ket{\nu}$ and $\ket{\nu'}$ are many-electron eigenstates of $\hat{H}_0$,
and $Z$ is the [grand partition function](/know/concept/grand-canonical-ensemble/).
According to the [convolution theorem](/know/concept/convolution-theorem/)
$\delta{\expval{\hat{n}}}(\vb{q}, \omega) = \chi(\vb{q}, \omega) \: U(\vb{q})$.
In anticipation, we swap $\nu$ and $\nu''$ in the second term,
so the general response function is written as:

$$\begin{aligned}
    \chi(\vb{q}, \omega)
    = \frac{1}{Z V} \sum_{\nu \nu'} \bigg(
    \frac{\matrixel{\nu}{\hat{n}(\vb{q})}{\nu'} \matrixel{\nu'}{\hat{n}(-\vb{q})}{\nu}}
    {\hbar (\omega + i \eta) + E_\nu - E_{\nu'}}
    - \frac{\matrixel{\nu}{\hat{n}(-\vb{q})}{\nu'} \matrixel{\nu'}{\hat{n}(\vb{q})}{\nu}}
    {\hbar (\omega + i \eta) + E_{\nu'} - E_\nu} \bigg) e^{-\beta E_\nu}
\end{aligned}$$

All operators are in the Schrödinger picture from now on, hence we dropped the subscript $S$.

To proceed, we need to rewrite $\hat{n}(\vb{q})$ somehow.
If we neglect electron-electron interactions,
the single-particle states are simply plane waves, in which case:

$$\begin{aligned}
    \hat{n}(\vb{q})
    = \sum_{\sigma \vb{k}} \hat{c}_{\sigma,\vb{k}}^\dagger \hat{c}_{\sigma,\vb{k} + \vb{q}}
    \qquad \qquad
    \hat{n}(-\vb{q})
    = \hat{n}^\dagger(\vb{q})
\end{aligned}$$

<div class="accordion">
<input type="checkbox" id="proof-density"/>
<label for="proof-density">Proof</label>
<div class="hidden">
<label for="proof-density">Proof.</label>
Starting from the general definition of $\hat{n}$,
we write out the field operators $\hat{\Psi}(\vb{r})$,
and insert the known non-interacting single-electron orbitals
$\psi_\vb{k}(\vb{r}) = e^{i \vb{k} \cdot \vb{r}} / \sqrt{V}$:

$$\begin{aligned}
    \hat{n}(\vb{r})
    \equiv \hat{\Psi}{}^\dagger(\vb{r}) \hat{\Psi}(\vb{r})
    = \sum_{\vb{k} \vb{k}'} \psi_{\vb{k}}^*(\vb{r}) \: \psi_{\vb{k}'}(\vb{r})\: \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k}'}
    = \frac{1}{V} \sum_{\vb{k} \vb{k}'} e^{i (\vb{k}' - \vb{k}) \cdot \vb{r}} \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k}'}
\end{aligned}$$

Taking the Fourier transfom yields a Dirac delta function $\delta$:

$$\begin{aligned}
    \hat{n}(\vb{q})
    = \frac{1}{V} \int_{-\infty}^\infty
    \sum_{\vb{k} \vb{k}'} \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k}'} \: e^{i (\vb{k}' - \vb{k} - \vb{q})\cdot \vb{r}} \dd{\vb{r}}
    = \frac{(2 \pi)^D}{V} \sum_{\vb{k} \vb{k}'} \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k}'} \: \delta(\vb{k}' \!-\! \vb{k} \!-\! \vb{q})
\end{aligned}$$

If we impose periodic boundary conditions
on our $D$-dimensional hypercube of volume $V$,
then $\vb{k}$ becomes discrete,
with per-value spacing $2 \pi / V^{1/D}$ along each axis.

Consequently, each orbital $\psi_\vb{k}$ uniquely occupies
a volume $(2 \pi)^D / V$ in $\vb{k}$-space, so we make the approximation
$\sum_{\vb{k}} \approx V / (2 \pi)^D \int_{-\infty}^\infty \dd{\vb{k}}$.
This becomes exact for $V \to \infty$,
in which case $\vb{k}$ also becomes continuous again,
which is what we want for jellium.

We apply this standard trick from condensed matter physics to $\hat{n}$,
and $V$ cancels out:

$$\begin{aligned}
    \hat{n}(\vb{q})
    &= \frac{(2 \pi)^D}{V} \frac{V}{(2 \pi)^D} \sum_{\vb{k}} \int_{-\infty}^\infty
    \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k}'} \: \delta(\vb{k}' \!-\! \vb{k} \!-\! \vb{q}) \dd{\vb{k}'}
    = \sum_{\vb{k}} \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}
\end{aligned}$$

For negated arguments, we simply define $\vb{k}' \equiv \vb{k} - \vb{q}$
to show that $\hat{n}(-\vb{q}) = \hat{n}{}^\dagger(\vb{q})$,
which can also be understood as a consequence of $\hat{n}(\vb{r})$ being real:

$$\begin{aligned}
    \hat{n}(-\vb{q})
    = \sum_{\vb{k}} \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} - \vb{q}}
    = \sum_{\vb{k}'} \hat{c}_{\vb{k}' + \vb{q}}^\dagger \hat{c}_{\vb{k}'}
    = \hat{n}^\dagger(\vb{q})
\end{aligned}$$

The summation variable $\vb{k}$ has an associated spin $\sigma$,
and $\hat{n}$ does not carry any spin.
</div>
</div>

When neglecting interactions, it is tradition to rename $\chi$ to $\chi_0$.
We insert $\hat{n}$, suppressing spin:

$$\begin{aligned}
    \chi_0
    &= \frac{1}{Z V} \sum_{\vb{k} \vb{k}'} \sum_{\nu \nu'} \bigg(
    \frac{\matrixel{\nu}{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}{\nu'}
    \matrixel{\nu'}{\hat{c}_{\vb{k}' + \vb{q}}^\dagger \hat{c}_{\vb{k}'}}{\nu}}
    {\hbar (\omega + i \eta) + E_\nu - E_{\nu'}}
    - \frac{\matrixel{\nu}{\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}}{\nu'}
    \matrixel{\nu'}{\hat{c}_{\vb{k}'}^\dagger \hat{c}_{\vb{k}' + \vb{q}}}{\nu}}
    {\hbar (\omega + i \eta) + E_{\nu'} - E_\nu} \bigg) e^{-\beta E_\nu}
\end{aligned}$$

Here, $\matrixel{\nu}{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}{\nu'}$
is only nonzero if $\ket{\nu'}$ is contructed from $\ket{\nu}$
by moving an electron from $\vb{k}$ to $\vb{k} \!+\! \vb{q}$,
and analogously for the other inner products.
As a result, $\vb{k} = \vb{k}'$ (and $\sigma = \sigma'$).

For the same reason, the energy difference $E_\nu \!-\! E_{\nu'}$
can simply be replaced by the cost of the single-particle excitation
$\xi_{\vb{k}} \!-\! \xi_{\vb{k} + \vb{q}}$,
where $\xi_{\vb{k}}$ is the energy of a $\vb{k}$-orbital.
Therefore:

$$\begin{aligned}
    \chi_0
    &= \frac{1}{Z V} \sum_{\vb{k}} \sum_{\nu \nu'} \bigg(
    \frac{\matrixel{\nu}{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}{\nu'}
    \matrixel{\nu'}{\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}}{\nu}}
    {\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
    - \frac{\matrixel{\nu}{\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}}{\nu'}
    \matrixel{\nu'}{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}{\nu}}
    {\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}} \bigg) e^{-\beta E_\nu}
\end{aligned}$$

Notice that we have eliminated all dependence on $\ket{\nu'}$,
so we remove it by $\sum_{\nu} \ket{\nu} \bra{\nu} = 1$:

$$\begin{aligned}
    \chi_0
    &= \frac{1}{Z V} \sum_{\vb{k}} \sum_{\nu} \bigg(
    \frac{\matrixel{\nu}{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}} \hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}}{\nu}}
    {\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
    - \frac{\matrixel{\nu}{\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}} \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}{\nu}}
    {\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}} \bigg) e^{-\beta E_\nu}
    \\
    &= \frac{1}{Z V} \sum_{\vb{k}} \sum_{\nu}
    \frac{\matrixel{\nu}{\comm*{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}
    {\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}} \: e^{- \beta \hat{H}_0}}{\nu}}
    {\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
\end{aligned}$$

Where we recognized the commutator,
and eliminated $E_\nu$ using $\hat{H}_0 \ket{n} = E_\nu \ket{\nu}$.
The resulting expression has the form of a matrix trace $\Tr$
and a thermal expectation $\expval{}_0$:

$$\begin{aligned}
    \chi_0
    &= \frac{1}{Z V} \sum_{\vb{k}} \frac{\Tr\!\big(\comm*{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}
    {\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}} \: e^{- \beta \hat{H}_0} \big)}
    {\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
    = \frac{1}{V} \sum_{\vb{k}}
    \frac{\expval*{\comm*{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}{\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}}}_0}
    {\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
\end{aligned}$$

This commutator can be evaluated,
and in this particular case it turns out to be:

$$\begin{aligned}
    \comm*{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}{\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}}
    = \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k}} - \hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k} + \vb{q}}
\end{aligned}$$

<div class="accordion">
<input type="checkbox" id="proof-commutator"/>
<label for="proof-commutator">Proof</label>
<div class="hidden">
<label for="proof-commutator">Proof.</label>
In general, for any single-particle states labeled by $m$, $n$, $o$ and $p$, we have:
$$\begin{aligned}
    \comm*{\hat{c}_m^\dagger \hat{c}_n}{\hat{c}_o^\dagger \hat{c}_p}
    &= \hat{c}_m^\dagger \hat{c}_n \hat{c}_o^\dagger \hat{c}_p - \hat{c}_o^\dagger \hat{c}_p \hat{c}_m^\dagger \hat{c}_n
    \\
    &= \hat{c}_m^\dagger \big( \acomm*{\hat{c}_n}{\hat{c}_o^\dagger} - \hat{c}_o^\dagger \hat{c}_n \big) \hat{c}_p
    - \hat{c}_o^\dagger \big( \acomm*{\hat{c}_p}{\hat{c}_m^\dagger} - \hat{c}_m^\dagger \hat{c}_p \big) \hat{c}_n
\end{aligned}$$

Using the standard fermion anticommutation relations, this becomes:

$$\begin{aligned}
    \comm*{\hat{c}_m^\dagger \hat{c}_n}{\hat{c}_o^\dagger \hat{c}_p}
    &= \hat{c}_m^\dagger \big( \delta_{no} - \hat{c}_o^\dagger \hat{c}_n \big) \hat{c}_p
    - \hat{c}_o^\dagger \big( \delta_{pm} - \hat{c}_m^\dagger \hat{c}_p \big) \hat{c}_n
    \\
    &= \hat{c}_m^\dagger \hat{c}_p \: \delta_{no} - \hat{c}_m^\dagger \hat{c}_o^\dagger \hat{c}_n \hat{c}_p
    - \hat{c}_o^\dagger \hat{c}_n \: \delta_{pm} + \hat{c}_o^\dagger \hat{c}_m^\dagger \hat{c}_p \hat{c}_n
    \\
    &= \hat{c}_m^\dagger \hat{c}_p \: \delta_{no} - \hat{c}_o^\dagger \hat{c}_n \: \delta_{pm}
\end{aligned}$$

In this case, $m = p = \vb{k}$ and $n = o = \vb{k} \!+\! \vb{q}$,
so the Kronecker deltas are unnecessary.
</div>
</div>

We substitute this result into $\chi_0$,
and reintroduce the spin index $\sigma$ associated with $\vb{k}$:

$$\begin{aligned}
    \chi_0(\vb{q}, \omega)
    = \frac{1}{V} \sum_{\sigma \vb{k}}
    \frac{\expval*{\hat{c}_{\sigma,\vb{k}}^\dagger \hat{c}_{\sigma,\vb{k}} - \hat{c}_{\sigma,\vb{k}+\vb{q}}^\dagger \hat{c}_{\sigma,\vb{k}+\vb{q}}}_0}
    {\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
\end{aligned}$$

The operator $\hat{c}_{\sigma.\vb{k}}^\dagger \hat{c}_{\sigma.\vb{k}}$
simply counts the number of electrons in state $(\sigma, \vb{k})$,
which is given by the [Fermi-Dirac distribution](/know/concept/fermi-dirac-distribution/) $n_F$.
This gives us the **Lindhard response function**:

$$\begin{aligned}
    \boxed{
        \chi_0(\vb{q}, \omega)
        = \frac{1}{V} \sum_{\sigma \vb{k}}
        \frac{n_F(\xi_{\vb{k}}) - n_F(\xi_{\vb{k} + \vb{q}})}
        {\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
    }
\end{aligned}$$

From this, we would like to get the
[dielectric function](/know/concept/dielectric-function/) $\varepsilon_r$.
Recall its definition, where $U_\mathrm{tot}$, $U_\mathrm{ext}$, and $U_\mathrm{ind}$
are the total, external and induced potentials, respectively:

$$\begin{aligned}
    U_\mathrm{tot}
    = U_\mathrm{ext} + U_\mathrm{ind}
    = \frac{U_\mathrm{ext}}{\varepsilon_r}
\end{aligned}$$

Note that these are all *energy* potentials:
this choice is justified because all energy potentials
are caused by electric fields in this case.
The *electric* potential is recoverable as
$\Phi_\mathrm{tot} = q_e U_\mathrm{tot}$,
where $q_e < 0$ is the charge of an electron.

From the Lindhard response function $\chi_0$,
we get the induced particle density offset $\delta{\expval{\hat{n}}}$
caused by a potential $U$.
The density $\delta{\expval{\hat{n}}}$ should be self-consistent,
implying $U = U_\mathrm{tot}$.
In other words, we have a linear relation
$\delta{\expval{\hat{n}}} = \chi_0 U_\mathrm{tot}$,
so the standard formula for $\varepsilon_r$ gives:

$$\begin{aligned}
    \boxed{
        \varepsilon_r(\vb{q}, \omega)
        = 1 - \frac{U_{ee}(\vb{q})}{V}
        \sum_{\sigma \vb{k}} \frac{n_F(\xi_{\vb{k}}) - n_F(\xi_{\vb{k} + \vb{q}})}{\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
    }
\end{aligned}$$

Where $U_{ee}(\vb{q}) = q_e^2 / (\varepsilon_0 |\vb{q}|^2)$
is Coulomb repulsion.
This is the **Lindhard dielectric function** of a free
non-interacting electron gas,
at any temperature and for any dimensionality.



## References
1.  K.S. Thygesen,
    *Advanced solid state physics: linear response theory*,
    2013, unpublished.
2.  H. Bruus, K. Flensberg,
    *Many-body quantum theory in condensed matter physics*,
    2016, Oxford.
3.  G. Grosso, G.P. Parravicini,
    *Solid state physics*,
    2nd edition, Elsevier.