1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
---
title: "Matsubara sum"
firstLetter: "M"
publishDate: 2021-11-13
categories:
- Physics
- Quantum mechanics
date: 2021-11-05T15:19:38+01:00
draft: false
markup: pandoc
---
# Matsubara sum
A **Matsubara sum** is a summation of the following form,
which notably appears as the inverse
[Fourier transform](/know/concept/fourier-transform/) of the
[Matsubara Green's function](/know/concept/matsubara-greens-function/):
$$\begin{aligned}
S_{B,F}
= \frac{1}{\hbar \beta} \sum_{i \omega_n} g(i \omega_n) \: e^{i \omega_n \tau}
\end{aligned}$$
Where $i \omega_n$ are the Matsubara frequencies
for bosons ($B$) or fermions ($F$),
and $g(z)$ is a function on the complex plane
that is [holomorphic](/know/concept/holomorphic-function/)
except for a known set of simple poles,
and $\tau$ is a real parameter
(e.g. the [imaginary time](/know/concept/imaginary-time/))
satisfying $-\hbar \beta < \tau < \hbar \beta$.
Now, consider the following integral
over a (for now) unspecified counter-clockwise contour $C$,
with a (for now) unspecified weighting function $h(z)$:
$$\begin{aligned}
\oint_C \frac{g(z) h(z)}{2 \pi i} e^{z \tau} \dd{z}
= \sum_{z_p} e^{z_p \tau} \: \underset{z \to z_p}{\mathrm{Res}}\big( g(z) h(z) \big)
\end{aligned}$$
Where we have applied the residue theorem
to get a sum over all simple poles $z_p$
of either $g$ or $h$ (but not both) enclosed by $C$.
Clearly, we could make this look like a Matsubara sum,
if we choose $h$ such that it has poles at $i \omega_n$.
Therefore, we choose the weighting function $h(z)$ as follows,
where $n_B(z)$ is the [Bose-Einstein distribution](/know/concept/bose-einstein-distribution/),
and $n_F(z)$ is the [Fermi-Dirac distribution](/know/concept/fermi-dirac-distribution/):
$$\begin{aligned}
h(z)
=
\begin{cases}
n_{B,F}(z) & \mathrm{if}\; \tau \ge 0
\\
-n_{B,F}(-z) & \mathrm{if}\; \tau \le 0
\end{cases}
\qquad \qquad
n_{B,F}(z)
= \frac{1}{e^{\hbar \beta z} \mp 1}
\end{aligned}$$
The distinction between the signs of $\tau$ is needed
to ensure that the integrand $h(z) e^{z \tau}$ decays for $|z| \to \infty$,
both for $\Re(z) > 0$ and $\Re(z) < 0$.
This choice of $h$ indeed has poles at the respective
Matsubara frequencies $i \omega_n$ of bosons and fermions,
and the residues are:
$$\begin{aligned}
\underset{z \to i \omega_n}{\mathrm{Res}}\!\big( n_B(z) \big)
&= \lim_{z \to i \omega_n}\!\bigg( \frac{z - i \omega_n}{e^{\hbar \beta z} - 1} \bigg)
= \lim_{\eta \to 0}\!\bigg( \frac{i \omega_n + \eta - i \omega_n}{e^{i \hbar \beta \omega_n} e^{\hbar \beta \eta} - 1} \bigg)
\\
&= \lim_{\eta \to 0}\!\bigg( \frac{\eta}{e^{\hbar \beta \eta} - 1} \bigg)
= \lim_{\eta \to 0}\!\bigg( \frac{\eta}{1 + \hbar \beta \eta - 1} \bigg)
= \frac{1}{\hbar \beta}
\\
\underset{z \to i \omega_n}{\mathrm{Res}}\!\big( n_F(z) \big)
&= \lim_{z \to i \omega_n}\!\bigg( \frac{z - i \omega_n}{e^{\hbar \beta z} + 1} \bigg)
= \lim_{\eta \to 0}\!\bigg( \frac{i \omega_n + \eta - i \omega_n}{e^{i \hbar \beta \omega_n} e^{\hbar \beta \eta} + 1} \bigg)
\\
&= \lim_{\eta \to 0}\!\bigg( \frac{\eta}{e^{\hbar \beta \eta} + 1} \bigg)
= \lim_{\eta \to 0}\!\bigg( \frac{\eta}{- 1 - \hbar \beta \eta + 1} \bigg)
= - \frac{1}{\hbar \beta}
\end{aligned}$$
In the definition of $h$, the sign flip for $\tau \le 0$
is introduced because negating the argument also negates the residues,
i.e. $\mathrm{Res}\big( n_F(-z) \big) = -\mathrm{Res}\big( n_F(z) \big)$.
With this $h$, our contour integral can be rewritten as follows:
$$\begin{aligned}
\oint_C \frac{g(z) h(z)}{2 \pi i} e^{z \tau} \dd{z}
&= \sum_{z_p} e^{z_p \tau} n_{B,F}(z_p) \: \underset{z \to z_p}{\mathrm{Res}}\big( g(z) \big)
+ \sum_{i \omega_n} e^{i \omega_n \tau} g(i \omega_n) \: \underset{z \to i \omega_n}{\mathrm{Res}}\!\big( n_{B,F}(z) \big)
\\
&= \sum_{z_p} e^{z_p \tau} n_{B,F}(z_p) \: \underset{z \to z_p}{\mathrm{Res}}\big( g(z) \big)
\pm \frac{1}{\hbar \beta} \sum_{i \omega_n} g(i \omega_n) \: e^{i \omega_n \tau}
\end{aligned}$$
Where $+$ is for bosons, and $-$ for fermions.
Here, we recognize the last term as the Matsubara sum $S_{F,B}$,
for which we isolate, yielding:
$$\begin{aligned}
S_{B,F}
= \mp \sum_{z_p} e^{z_p \tau} n_{B,F}(z_p) \: \underset{z \to z_p}{\mathrm{Res}}\big( g(z) \big)
\pm \oint_C \frac{g(z) h(z)}{2 \pi i} e^{z \tau} \dd{z}
\end{aligned}$$
Now we must choose $C$. Assuming $g(z)$ does not interfere,
we know that $h(z) e^{z \tau}$ decays to zero
for $|z| \to \infty$, so a useful choice would be a circle of radius $R$.
If we then let $R \to \infty$, the contour encloses
the whole complex plane, including all of the integrand's poles.
However, thanks to the integrand's decay,
the resulting contour integral must vanish:
$$\begin{aligned}
C
= R e^{i \theta}
\quad \implies \quad
\lim_{R \to \infty}
\oint_C g(z) \: h(z) \: e^{z \tau} \dd{z}
= 0
\end{aligned}$$
We thus arrive at the following results
for bosonic and fermionic Matsubara sums $S_{B,F}$:
$$\begin{aligned}
\boxed{
S_{B,F}
= \mp \sum_{z_p} e^{z_p \tau} n_{B,F}(z_p) \: \underset{{z \to z_p}}{\mathrm{Res}}\big(g(z)\big)
}
\end{aligned}$$
## References
1. H. Bruus, K. Flensberg,
*Many-body quantum theory in condensed matter physics*,
2016, Oxford.
|