summaryrefslogtreecommitdiff
path: root/content/know/concept/maxwell-boltzmann-distribution/index.pdc
blob: 38b56fd5329eb2c676efd526ccea93157ca9079c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
---
title: "Maxwell-Boltzmann distribution"
firstLetter: "M"
publishDate: 2021-05-08
categories:
- Physics
- Statistics
- Thermodynamics

date: 2021-05-08T18:35:37+02:00
draft: false
markup: pandoc
---

# Maxwell-Boltzmann distribution

The **Maxwell-Boltzmann distributions** are a set of closely related
probability distributions with applications in classical statistical physics.


## Velocity vector distribution

In the canonical ensemble
(where a fixed-size system can exchange energy with its environment),
the probability of a microstate with energy $E$ is given by the Boltzmann distribution:

$$\begin{aligned}
    f(E)
    \:\propto\: \exp\!\big(\!-\! \beta E\big)
\end{aligned}$$

Where $\beta = 1 / k_B T$.
We split $E = K + U$,
where $K$ and $U$ are the total kinetic and potential energy contributions.
If there are $N$ particles in the system,
with positions $\tilde{r} = (\vec{r}_1, ..., \vec{r}_N)$
and momenta $\tilde{p} = (\vec{p}_1, ..., \vec{p}_N)$,
then $K$ only depends on $\tilde{p}$,
and $U$ only depends on $\tilde{r}$,
so the probability of a specific microstate
$(\tilde{r}, \tilde{p})$ is as follows:

$$\begin{aligned}
    f(\tilde{r}, \tilde{p})
    \:\propto\: \exp\!\Big(\!-\! \beta \big( K(\tilde{p}) + U(\tilde{r}) \big) \Big)
\end{aligned}$$

Since this is classical physics,
we can split the exponential.
In quantum mechanics,
the canonical commutation relation would prevent that.
Anyway, splitting yields:

$$\begin{aligned}
    f(\tilde{r}, \tilde{p})
    \:\propto\: \exp\!\big(\!-\! \beta K(\tilde{p}) \big) \exp\!\big(\!-\! \beta U(\tilde{r}) \big)
\end{aligned}$$

Classically, the probability
distributions of the momenta and positions are independent:

$$\begin{aligned}
    f_K(\tilde{p})
    \:\propto\: \exp\!\big(\!-\! \beta K(\tilde{p}) \big)
    \qquad
    f_U(\tilde{r})
    \:\propto\: \exp\!\big(\!-\! \beta U(\tilde{r}) \big)
\end{aligned}$$

We cannot evaluate $f_U(\tilde{r})$ further without knowing $U(\tilde{r})$ for a system.
We thus turn to $f_K(\tilde{p})$, and see that the total kinetic
energy $K(\tilde{p})$ is simply the sum of the particles' individual
kinetic energies $K_n(\vec{p}_n)$, which are well-known:

$$\begin{aligned}
    K(\tilde{p})
    = \sum_{n = 1}^N K_n(\vec{p}_n)
    \qquad \mathrm{where} \qquad
    K_n(\vec{p}_n)
    = \frac{|\vec{p}_n|^2}{2 m}
\end{aligned}$$

Consequently, the probability distribution $f(p_x, p_y, p_z)$ for the
momentum vector of a single particle is as follows,
after normalization:

$$\begin{aligned}
    f(p_x, p_y, p_z)
    = \Big( \frac{1}{2 \pi m k_B T} \Big)^{3/2} \exp\!\Big( \!-\!\frac{(p_x^2 + p_y^2 + p_z^2)}{2 m k_B T} \Big)
\end{aligned}$$

We now rewrite this using the velocities $v_x = p_x / m$,
and update the normalization, giving:

$$\begin{aligned}
    \boxed{
        f(v_x, v_y, v_z)
        = \Big( \frac{m}{2 \pi k_B T} \Big)^{3/2} \exp\!\Big( \!-\!\frac{m (v_x^2 + v_y^2 + v_z^2)}{2 k_B T} \Big)
    }
\end{aligned}$$

This is the **Maxwell-Boltzmann velocity vector distribution**.
Clearly, this is a product of three exponentials,
so the velocity in each direction is independent of the others:

$$\begin{aligned}
    f(v_x)
    = \sqrt{\frac{m}{2 \pi k_B T}} \exp\!\Big( \!-\!\frac{m v_x^2}{2 k_B T} \Big)
\end{aligned}$$

The distribution is thus an isotropic gaussian with standard deviations given by:

$$\begin{aligned}
    \sigma_x = \sigma_y = \sigma_z
    = \sqrt{\frac{k_B T}{m}}
\end{aligned}$$


## Speed distribution

We know the distribution of the velocities along each axis,
but what about the speed $v = |\vec{v}|$?
Because we do not care about the direction of $\vec{v}$, only its magnitude,
the [density of states](/know/concept/density-of-states/) $g(v)$ is not constant:
it is the rate-of-change of the volume of a sphere of radius $v$:

$$\begin{aligned}
    g(v)
    = \dv{v} \Big( \frac{4 \pi}{3} v^3 \Big)
    = 4 \pi v^2
\end{aligned}$$

Multiplying the velocity vector distribution by $g(v)$
and substituting $v^2 = v_x^2 + v_y^2 + v_z^2$
then gives us the **Maxwell-Boltzmann speed distribution**:

$$\begin{aligned}
    \boxed{
        f(v)
        = 4 \pi \Big( \frac{m}{2 \pi k_B T} \Big)^{3/2} v^2 \exp\!\Big( \!-\!\frac{m v^2}{2 k_B T} \Big)
    }
\end{aligned}$$

Some notable points on this distribution are
the most probable speed $v_{\mathrm{mode}}$,
the mean average speed $v_{\mathrm{mean}}$,
and the root-mean-square speed $v_{\mathrm{rms}}$:

$$\begin{aligned}
    f'(v_\mathrm{mode})
    = 0
    \qquad
    v_\mathrm{mean}
    = \int_0^\infty v \: f(v) \dd{v}
    \qquad
    v_\mathrm{rms}
    = \bigg( \int_0^\infty v^2 \: f(v) \dd{v} \bigg)^{1/2}
\end{aligned}$$

Which can be calculated to have the following exact expressions:

$$\begin{aligned}
    \boxed{
        v_{\mathrm{mode}}
        = \sqrt{\frac{2 k_B T}{m}}
    }
    \qquad
    \boxed{
        v_{\mathrm{mean}}
        = \sqrt{\frac{8 k_B T}{\pi m}}
    }
    \qquad
    \boxed{
        v_{\mathrm{rms}}
        = \sqrt{\frac{3 k_B T}{m}}
    }
\end{aligned}$$


## Kinetic energy distribution

Using the speed distribution,
we can work out the kinetic energy distribution.
Because $K$ is not proportional to $v$,
we must do this by demanding that:

$$\begin{aligned}
    f(K) \dd{K}
    = f(v) \dd{v}
    \quad \implies \quad
    f(K)
    = f(v) \dv{v}{K}
\end{aligned}$$

We know that $K = m v^2 / 2$,
meaning $\dd{K} = m v \dd{v}$
so the energy distribution $f(K)$ is:

$$\begin{aligned}
    f(K)
    = \frac{f(v)}{m v}
    = \sqrt{\frac{2 m}{\pi}} \: \bigg( \frac{1}{k_B T} \bigg)^{3/2} v \exp\!\Big( \!-\!\frac{m v^2}{2 k_B T} \Big)
\end{aligned}$$

Substituting $v = \sqrt{2 K/m}$ leads to
the **Maxwell-Boltzmann kinetic energy distribution**:

$$\begin{aligned}
    \boxed{
        f(K)
        = 2 \sqrt{\frac{K}{\pi}} \: \bigg( \frac{1}{k_B T} \bigg)^{3/2} \exp\!\Big( \!-\!\frac{K}{k_B T} \Big)
    }
\end{aligned}$$



## References
1.  H. Gould, J. Tobochnik,
    *Statistical and thermal physics*, 2nd edition,
    Princeton.