1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
|
---
title: "Navier-Cauchy equation"
firstLetter: "N"
publishDate: 2021-04-02
categories:
- Physics
- Continuum physics
date: 2021-04-02T15:04:55+02:00
draft: false
markup: pandoc
---
# Navier-Cauchy equation
The **Navier-Cauchy equation** describes **elastodynamics**:
the movements inside an elastic solid
in response to external forces and/or internal stresses.
For a particle of the solid, whose position is given by the displacement field $\va{u}$,
Newton's second law is as follows,
where $\dd{m}$ and $\dd{V}$ are the particle's mass and volume, respectively:
$$\begin{aligned}
\va{f^*} \dd{V}
= \pdv[2]{\va{u}}{t} \dd{m}
= \rho \pdv[2]{\va{u}}{t} \dd{V}
\end{aligned}$$
Where $\rho$ is the mass density,
and $\va{f^*}$ is the effective force density,
defined from the [Cauchy stress tensor](/know/concept/cauchy-stress-tensor/) $\hat{\sigma}$
like so, with $\va{f}$ being an external body force, e.g. from gravity:
$$\begin{aligned}
\va{f^*}
= \va{f} + \nabla \cdot \hat{\sigma}^\top
\end{aligned}$$
We can therefore write Newton's second law as follows,
while switching to index notation,
where $\nabla_j = \pdv*{x_j}$ is the partial derivative
with respect to the $j$th coordinate:
$$\begin{aligned}
f_i + \sum_{j} \nabla_j \sigma_{ij}
= \rho \pdv[2]{u_i}{t}
\end{aligned}$$
The components $\sigma_{ij}$ of the Cauchy stress tensor
are given by [Hooke's law](/know/concept/hookes-law/),
where $\mu$ and $\lambda$ are the Lamé coefficients,
which describe the material:
$$\begin{aligned}
\sigma_{ij}
= 2 \mu u_{ij} + \lambda \delta_{ij} \sum_{k} u_{kk}
\end{aligned}$$
In turn, the components $u_{ij}$ of the
[Cauchy strain tensor](/know/concept/cauchy-strain-tensor/)
are defined as follows,
where $u_i$ are once again the components of the displacement vector $\va{u}$:
$$\begin{aligned}
u_{ij}
= \frac{1}{2} \big( \nabla_i u_j + \nabla_j u_i \big)
\end{aligned}$$
To derive the Navier-Cauchy equation,
we start by inserting Hooke's law into Newton's law:
$$\begin{aligned}
\rho \pdv[2]{u_i}{t}
%= f_i + \sum_{j} \nabla_j \sigma_{ij}
&= f_i + 2 \mu \sum_{j} \nabla_j u_{ij} + \lambda \sum_{j} \nabla_j \bigg( \delta_{ij} \sum_{k} u_{kk} \bigg)
\\
&= f_i + 2 \mu \sum_{j} \nabla_j u_{ij} + \lambda \nabla_i \sum_{j} u_{jj}
\end{aligned}$$
And then into this we insert the definition of the strain components $u_{ij}$, yielding:
$$\begin{aligned}
\rho \pdv[2]{u_i}{t}
&= f_i + \mu \sum_{j} \nabla_j \big( \nabla_i u_j + \nabla_j u_i \big) + \lambda \nabla_i \sum_{j} \nabla_j u_{j}
\end{aligned}$$
Rearranging this a bit leads us to the Navier-Cauchy equation written in index notation:
$$\begin{aligned}
\boxed{
\rho \pdv[2]{u_i}{t}
= f_i + \mu \sum_{j} \nabla_j^2 u_i + (\mu + \lambda) \nabla_i \sum_{j} \nabla_j u_j
}
\end{aligned}$$
Traditionally, it is written in vector notation instead,
in which case it looks like this:
$$\begin{aligned}
\boxed{
\rho \pdv[2]{\va{u}}{t}
= \va{f} + \mu \nabla^2 \va{u} + (\mu + \lambda) \nabla (\nabla \cdot \va{u})
}
\end{aligned}$$
A special case is the **Navier-Cauchy equilibrium equation**,
where the left-hand side is just zero.
That version describes **elastostatics**: the deformation of a solid at rest.
## References
1. B. Lautrup,
*Physics of continuous matter: exotic and everyday phenomena in the macroscopic world*, 2nd edition,
CRC Press.
|