summaryrefslogtreecommitdiff
path: root/content/know/concept/navier-stokes-equations/index.pdc
blob: 7256b7e65bcc0cfbe71fa029bb1d7a8772c3cfc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
title: "Navier-Stokes equations"
firstLetter: "N"
publishDate: 2021-04-12
categories:
- Physics
- Fluid mechanics
- Fluid dynamics

date: 2021-04-12T13:14:09+02:00
draft: false
markup: pandoc
---

# Navier-Stokes equations

While the [Euler equations](/know/concept/euler-equations/) govern *ideal* "dry" fluids,
the **Navier-Stokes equations** govern *nonideal* "wet" fluids,
i.e. fluids with nonzero [viscosity](/know/concept/viscosity/).


## Incompressible fluid

First of all, we can reuse the incompressibility condition for ideal fluids, without modifications:

$$\begin{aligned}
    \boxed{
        \nabla \cdot \va{v} = 0
    }
\end{aligned}$$

Furthermore, from the derivation of the Euler equations,
we know that Newton's second law can be written as follows,
for an infinitesimal particle of the fluid:

$$\begin{aligned}
    \rho \frac{\mathrm{D} \va{v}}{\mathrm{D} t}
    = \va{f^*}
\end{aligned}$$

$\mathrm{D}/\mathrm{D}t$ is the [material derivative](/know/concept/material-derivative/),
$\rho$ is the density, and $\va{f^*}$ is the effective force density,
expressed in terms of an external body force $\va{f}$ (e.g. gravity)
and the [Cauchy stress tensor](/know/concept/cauchy-stress-tensor/) $\hat{\sigma}$:

$$\begin{aligned}
    \va{f^*}
    = \va{f} + \nabla \cdot \hat{\sigma}^\top
\end{aligned}$$

From the definition of viscosity,
the stress tensor's elements are like so for a Newtonian fluid:

$$\begin{aligned}
    \sigma_{ij}
    = - p \delta_{ij} + \eta (\nabla_i v_j + \nabla_j v_i)
\end{aligned}$$

Where $\eta$ is the dynamic viscosity.
Inserting this, we calculate $\nabla \cdot \hat{\sigma}^\top$ in index notation:

$$\begin{aligned}
    \big( \nabla \cdot \hat{\sigma}^\top \big)_i
    = \sum_{j} \nabla_j \sigma_{ij}
    &= \sum_{j} \Big( \!-\! \delta_{ij} \nabla_j p + \eta (\nabla_i \nabla_j v_j + \nabla_j^2 v_i) \Big)
    \\
    &= - \nabla_i p + \eta \nabla_i \sum_{j} \nabla_j v_j + \eta \sum_{j} \nabla_j^2 v_i
\end{aligned}$$

Thanks to incompressibility $\nabla \cdot \va{v} = 0$,
the middle term vanishes, leaving us with:

$$\begin{aligned}
    \va{f^*}
    = \va{f} - \nabla p + \eta \nabla^2 \va{v}
\end{aligned}$$

We assume that the only body force is gravity $\va{f} = \rho \va{g}$.
Newton's second law then becomes:

$$\begin{aligned}
    \rho \frac{\mathrm{D} \va{v}}{\mathrm{D} t}
    = \rho \va{g} - \nabla p + \eta \nabla^2 \va{v}
\end{aligned}$$

Dividing by $\rho$, and replacing $\eta$
with the kinematic viscosity $\nu = \eta/\rho$,
yields the main equation:

$$\begin{aligned}
    \boxed{
        \frac{\mathrm{D} \va{v}}{\mathrm{D} t}
        = \va{g} - \frac{\nabla p}{\rho} + \nu \nabla^2 \va{v}
    }
\end{aligned}$$

Finally, we can optionally allow incompressible fluids
with an inhomogeneous "lumpy" density $\rho$,
by demanding conservation of mass,
just like for the Euler equations:

$$\begin{aligned}
    \boxed{
        \frac{\mathrm{D} \rho}{\mathrm{D} t}
        = 0
    }
\end{aligned}$$

Putting it all together, the Navier-Stokes equations for an incompressible fluid are given by:

$$\begin{aligned}
    \boxed{
        \frac{\mathrm{D} \va{v}}{\mathrm{D} t}
        = \va{g} - \frac{\nabla p}{\rho} + \nu \nabla^2 \va{v}
        \qquad
        \nabla \cdot \va{v} = 0
        \qquad
        \frac{\mathrm{D} \rho}{\mathrm{D} t}
        = 0
    }
\end{aligned}$$

Due to the definition of viscosity $\nu$ as the molecular "stickiness",
we have boundary conditions for the velocity field $\va{v}$:
at any interface, $\va{v}$ must be continuous.
Likewise, Newton's third law demands that the normal component
of stress $\hat{\sigma} \cdot \vu{n}$ is continuous there.



## References
1.  B. Lautrup,
    *Physics of continuous matter: exotic and everyday phenomena in the macroscopic world*, 2nd edition,
    CRC Press.