1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
---
title: "Propagator"
firstLetter: "P"
publishDate: 2021-07-04
categories:
- Physics
- Quantum mechanics
date: 2021-07-04T10:46:47+02:00
draft: false
markup: pandoc
---
# Propagator
In quantum mechanics, the **propagator** $K(x_f, t_f; x_i, t_i)$
gives the probability amplitude that a particle
starting at $x_i$ at $t_i$ ends up at position $x_f$ at $t_f$.
It is defined as follows:
$$\begin{aligned}
\boxed{
K(x_f, t_f; x_i, t_i)
\equiv \matrixel{x_f}{\hat{U}(t_f, t_i)}{x_i}
}
\end{aligned}$$
Where $\hat{U} \equiv \exp\!(- i t \hat{H} / \hbar)$ is the time-evolution operator.
The probability that a particle travels
from $(x_i, t_i)$ to $(x_f, t_f)$ is then given by:
$$\begin{aligned}
P
&= \big| K(x_f, t_f; x_i, t_i) \big|^2
\end{aligned}$$
Given a general (i.e. non-collapsed) initial state $\psi_i(x) \equiv \psi(x, t_i)$,
we must integrate over $x_i$:
$$\begin{aligned}
P
&= \bigg| \int_{-\infty}^\infty K(x_f, t_f; x_i, t_i) \: \psi_i(x_i) \dd{x_i} \bigg|^2
\end{aligned}$$
And if the final state $\psi_f(x) \equiv \psi(x, t_f)$
is not a basis vector either, then we integrate twice:
$$\begin{aligned}
P
&= \bigg| \iint_{-\infty}^\infty \psi_f^*(x_f) \: K(x_f, t_f; x_i, t_i) \: \psi_i(x_i) \dd{x_i} \dd{x_f} \bigg|^2
\end{aligned}$$
Given a $\psi_i(x)$, the propagator can also be used
to find the full final wave function:
$$\begin{aligned}
\boxed{
\psi(x_f, t_f)
= \int_{-\infty}^\infty \psi_i(x_i) K(x_f, t_f; x_i, t_i) \:dx_i
}
\end{aligned}$$
Sometimes the name "propagator" is also used to refer to
the so-called *fundamental solution* or *Green's function* $G$
of the time-dependent Schrödinger equation,
which is related to $K$ by:
$$\begin{aligned}
\boxed{
G(x_f, t_f; x_i, t_i)
= - \frac{i}{\hbar} \: \Theta(t_f - t_i) \: K(x_f, t_f; x_i, t_i)
}
\end{aligned}$$
Where $\Theta(t)$ is the [Heaviside step function](/know/concept/heaviside-step-function/).
The definition of $G$ is that it satisfies the following equation,
where $\delta$ is the [Dirac delta function](/know/concept/dirac-delta-function/):
$$\begin{aligned}
\Big( i \hbar \pdv{t_f} - \hat{H} \Big) G = \delta(x_f - x_i) \: \delta(t_f - t_i)
\end{aligned}$$
|