1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
---
title: "Rabi oscillation"
firstLetter: "R"
publishDate: 2021-09-22
categories:
- Physics
- Quantum mechanics
- Optics
date: 2021-09-18T00:41:43+02:00
draft: false
markup: pandoc
---
# Rabi oscillation
In quantum mechanics, from the derivation of
[time-dependent perturbation theory](/know/concept/time-dependent-perturbation-theory/),
we know that a time-dependent term $\hat{H}_1$ in the Hamiltonian
affects the state as follows,
where $c_n(t)$ are the coefficients of the linear combination
of basis states $\ket{n} \exp\!(-i E_n t / \hbar)$:
$$\begin{aligned}
i \hbar \dv{c_m}{t}
= \sum_{n} c_n(t) \matrixel{m}{\hat{H}_1}{n} \exp\!(i \omega_{mn} t)
\end{aligned}$$
Where $\omega_{mn} \equiv (E_m \!-\! E_n) / \hbar$
for energies $E_m$ and $E_n$.
Note that this equation is exact,
despite being used for deriving perturbation theory.
Consider a two-level system where $n \in \{a, b\}$,
in which case the above equation can be expanded to the following:
$$\begin{aligned}
\dv{c_a}{t}
&= - \frac{i}{\hbar} \matrixel{a}{\hat{H}_1}{b} \exp\!(- i \omega_0 t) \: c_b - \frac{i}{\hbar} \matrixel{a}{\hat{H}_1}{a} \: c_a
\\
\dv{c_b}{t}
&= - \frac{i}{\hbar} \matrixel{b}{\hat{H}_1}{a} \exp\!(i \omega_0 t) \: c_a - \frac{i}{\hbar} \matrixel{b}{\hat{H}_1}{b} \: c_b
\end{aligned}$$
Where $\omega_0 \equiv \omega_{ba}$ is positive.
We assume that $\hat{H}_1$ has odd spatial parity,
in which case [Laporte's selection rule](/know/concept/selection-rules/)
states that the diagonal matrix elements vanish, leaving:
$$\begin{aligned}
\dv{c_a}{t}
&= - \frac{i}{\hbar} \matrixel{a}{\hat{H}_1}{b} \exp\!(- i \omega_0 t) \: c_b
\\
\dv{c_b}{t}
&= - \frac{i}{\hbar} \matrixel{b}{\hat{H}_1}{a} \exp\!(i \omega_0 t) \: c_a
\end{aligned}$$
We now choose $\hat{H}_1$ to be as follows,
sinusoidally oscillating with a spatially odd $V(\vec{r})$:
$$\begin{aligned}
\hat{H}_1(t)
= V \cos\!(\omega t)
= \frac{V}{2} \Big( \exp\!(i \omega t) + \exp\!(-i \omega t) \Big)
\end{aligned}$$
We insert this into the equations for $c_a$ and $c_b$,
and define $V_{ab} \equiv \matrixel{a}{V}{b}$, leading us to:
$$\begin{aligned}
\dv{c_a}{t}
&= - i \frac{V_{ab}}{2 \hbar} \Big( \exp\!\big(i (\omega \!-\! \omega_0) t\big) + \exp\!\big(\!-\! i (\omega \!+\! \omega_0) t\big) \Big) \: c_b
\\
\dv{c_b}{t}
&= - i \frac{V_{ab}}{2 \hbar} \Big( \exp\!\big(i (\omega \!+\! \omega_0) t\big) + \exp\!\big(\!-\! i (\omega \!-\! \omega_0) t\big) \Big) \: c_a
\end{aligned}$$
Here, we make the *rotating wave approximation*:
assuming we are close to resonance $\omega \approx \omega_0$,
we decide that $\exp\!(i (\omega \!+\! \omega_0) t)$
oscillates so much faster than $\exp\!(i (\omega \!-\! \omega_0) t)$,
that its effect turns out negligible
when the system is observed over a reasonable time interval.
In other words, over this reasonably-sized time interval,
$\exp\!(i (\omega \!+\! \omega_0) t)$ averages to zero,
while $\exp\!(i (\omega \!-\! \omega_0) t)$ does not.
Dropping the respective terms thus leaves us with:
$$\begin{aligned}
\dv{c_a}{t}
= - i \frac{V_{ab}}{2 \hbar} \exp\!\big(i (\omega \!-\! \omega_0) t \big) \: c_b
\qquad \quad
\dv{c_b}{t}
= - i \frac{V_{ba}}{2 \hbar} \exp\!\big(\!-\! i (\omega \!-\! \omega_0) t \big) \: c_a
\end{aligned}$$
Now we can solve this system of coupled equations exactly.
We differentiate the first equation with respect to $t$,
and then substitute $\dv*{c_b}{t}$ for the second equation:
$$\begin{aligned}
\dv[2]{c_a}{t}
&= - i \frac{V_{ab}}{2 \hbar} \bigg( i (\omega - \omega_0) \: c_b + \dv{c_b}{t} \bigg) \exp\!\big(i (\omega \!-\! \omega_0) t \big)
\\
&= - i \frac{V_{ab}}{2 \hbar} \bigg( i (\omega - \omega_0) \: c_b
- i \frac{V_{ba}}{2 \hbar} \exp\!\big(\!-\! i (\omega \!-\! \omega_0) t \big) \: c_a \bigg)
\exp\!\big(i (\omega \!-\! \omega_0) t \big)
\\
&= \frac{V_{ab}}{2 \hbar} (\omega - \omega_0) \exp\!\big(i (\omega \!-\! \omega_0) t \big) \: c_b - \frac{|V_{ab}|^2}{(2 \hbar)^2} c_a
\end{aligned}$$
In the first term, we recognize $\dv*{c_a}{t}$,
which we insert to arrive at an equation for $c_a(t)$:
$$\begin{aligned}
0
= \dv[2]{c_a}{t} - i (\omega - \omega_0) \dv{c_a}{t} + \frac{|V_{ab}|^2}{(2 \hbar)^2} \: c_a
\end{aligned}$$
To solve this, we make the ansatz $c_a(t) = \exp\!(\lambda t)$,
which, upon insertion, gives us:
$$\begin{aligned}
0
= \lambda^2 - i (\omega - \omega_0) \lambda + \frac{|V_{ab}|^2}{(2 \hbar)^2}
\end{aligned}$$
This quadratic equation has two complex roots $\lambda_1$ and $\lambda_2$,
which are found to be:
$$\begin{aligned}
\lambda_1
= i \frac{\omega - \omega_0 + \tilde{\Omega}}{2}
\qquad \quad
\lambda_2
= i \frac{\omega - \omega_0 - \tilde{\Omega}}{2}
\end{aligned}$$
Where we have defined the **generalized Rabi frequency** $\tilde{\Omega}$ to be given by:
$$\begin{aligned}
\boxed{
\tilde{\Omega}
\equiv \sqrt{(\omega - \omega_0)^2 + \frac{|V_{ab}|^2}{\hbar^2}}
}
\end{aligned}$$
So that the general solution $c_a(t)$ is as follows,
where $A$ and $B$ are arbitrary constants,
to be determined from initial conditions (and normalization):
$$\begin{aligned}
\boxed{
c_a(t)
= \Big( A \sin\!(\tilde{\Omega} t / 2) + B \cos\!(\tilde{\Omega} t / 2) \Big) \exp\!\big(i (\omega \!-\! \omega_0) t / 2 \big)
}
\end{aligned}$$
And then the corresponding $c_b(t)$ can be found
from the coupled equation we started at,
or, if we only care about the probability density $|c_a|^2$,
we can use $|c_b|^2 = 1 - |c_a|^2$.
For example, if $A = 0$ and $B = 1$,
we get the following probabilities
$$\begin{aligned}
|c_a(t)|^2
&= \cos^2(\tilde{\Omega} t / 2)
= \frac{1}{2} \Big( 1 + \cos\!(\tilde{\Omega} t) \Big)
\\
|c_b(t)|^2
&= \sin^2(\tilde{\Omega} t / 2)
= \frac{1}{2} \Big( 1 - \cos\!(\tilde{\Omega} t) \Big)
\end{aligned}$$
Note that the period was halved by squaring.
This periodic "flopping" of the particle between $\ket{a}$ and $\ket{b}$
is known as **Rabi oscillation**, **Rabi flopping** or the **Rabi cycle**.
This is a more accurate treatment
of the flopping found from first-order perturbation theory.
The name **generalized Rabi frequency** suggests
that there is a non-general version.
Indeed, the **Rabi frequency** $\Omega$ is based on
the special case of exact resonance $\omega = \omega_0$:
$$\begin{aligned}
\Omega
\equiv \frac{V_{ab}}{\hbar}
\end{aligned}$$
As an example, Rabi oscillation arises
in the [electric dipole approximation](/know/concept/electric-dipole-approximation/),
where $\hat{H}_1$ is:
$$\begin{aligned}
\hat{H}_1(t)
= - q \vec{r} \cdot \vec{E}_0 \cos(\omega t)
\end{aligned}$$
After making the rotating wave approximation,
the resulting Rabi frequency is given by:
$$\begin{aligned}
\Omega
= \frac{\vec{d} \cdot \vec{E}_0}{\hbar}
\end{aligned}$$
Where $\vec{E}_0$ is the [electric field](/know/concept/electric-field/) amplitude,
and $\vec{d} \equiv q \matrixel{a}{\vec{r}}{b}$ is the transition dipole moment
of the electron between orbitals $\ket{a}$ and $\ket{b}$.
## References
1. D.J. Griffiths, D.F. Schroeter,
*Introduction to quantum mechanics*, 3rd edition,
Cambridge.
|