summaryrefslogtreecommitdiff
path: root/content/know/concept/rayleigh-plesset-equation/index.pdc
blob: 75feb139470dc010751e8c5fa62c4b000b8c3274 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
title: "Rayleigh-Plesset equation"
firstLetter: "R"
publishDate: 2021-04-06
categories:
- Physics
- Fluid mechanics
- Fluid dynamics

date: 2021-04-06T19:03:36+02:00
draft: false
markup: pandoc
---

# Rayleigh-Plesset equation

In fluid dynamics, the **Rayleigh-Plesset equation**
describes how the radius of a spherical bubble evolves in time
inside an incompressible liquid.
Notably, it leads to [cavitation](/know/concept/cavitation/).

Consider the main
[Navier-Stokes equation](/know/concept/navier-stokes-equations/)
for the velocity field $\va{v}$:

$$\begin{aligned}
    \frac{\mathrm{D} \va{v}}{\mathrm{D} t}
    = \pdv{\va{v}}{t} + (\va{v} \cdot \nabla) \va{v}
    = - \frac{\nabla p}{\rho} + \nu \nabla^2 \va{v}
\end{aligned}$$

We make the ansatz $\va{v} = v(r, t) \vu{e}_r$,
where $\vu{e}_r$ is the basis vector;
in other words, we demand that the only spatial variation of the flow is in $r$.
The above equation then becomes:

$$\begin{aligned}
    \pdv{v}{t} + v \pdv{v}{r}
    = - \frac{1}{\rho} \pdv{p}{r}
    + \nu \bigg( \frac{1}{r^2} \pdv{r} \Big( r^2 \pdv{v}{r} \Big) - \frac{2}{r^2} v \bigg)
\end{aligned}$$

Meanwhile, the incompressibility condition
in [spherical coordinates](/know/concept/spherical-coordinates/) yields:

$$\begin{aligned}
    \nabla \cdot \va{v}
    = \frac{1}{r^2} \pdv{(r^2 v)}{r}
    = 0
\end{aligned}$$

This is only satisfied if $r^2 v$ is constant with respect to $r$,
leading us to a solution $v(r)$ given by:

$$\begin{aligned}
    v(r)
    = \frac{C(t)}{r^2}
\end{aligned}$$

Where $C(t)$ is an unknown function that does not depend on $r$.
We then insert this result in the main Navier-Stokes equation,
and isolate it for $\pdv*{p}{r}$, yielding:

$$\begin{aligned}
    \pdv{p}{r}
    = - \rho \bigg( \frac{1}{r^2} C' - \frac{2}{r^5} C^2
    - \nu \Big( \frac{2}{r^4} C - \frac{2}{r^4} C \Big) \bigg)
    = - \rho \bigg( \frac{1}{r^2} C' - \frac{2}{r^5} C^2 \bigg)
\end{aligned}$$

Integrating this with respect to $r$ yields the following expression for $p$,
where $p_\infty(t)$ is the (possibly time-dependent) pressure at $r = \infty$:

$$\begin{aligned}
    p(r)
    = p_\infty + \rho \bigg( \frac{1}{r} C' - \frac{1}{2 r^4} C^2 \bigg)
\end{aligned}$$

From the definition of [viscosity](/know/concept/viscosity/),
we know that the normal [stress](/know/concept/cauchy-stress-tensor/)
$\sigma_{rr}$ in the liquid is given by:

$$\begin{aligned}
    \sigma_{rr}(r)
    = - p(r) + 2 \rho \nu \pdv{v(r)}{r}
\end{aligned}$$

We now consider a spherical bubble
with radius $R(t)$ and interior pressure $P(t)$ along its surface.
Since we know the liquid pressure $p(r)$,
we can find $P$ from $\sigma_{rr}(r)$.
Furthermore, to include the effects of surface tension, we simply add
the [Young-Laplace law](/know/concept/young-laplace-law/) to $P$:

$$\begin{aligned}
    P
    = - \sigma_{rr}(R) + \alpha \frac{2}{R}
    = p(R) - 2 \rho \nu \Big( \frac{-2}{R^3} C \Big) + \alpha \frac{2}{R}
\end{aligned}$$

We isolate this for $p(R)$, and equate it to
our expression for $p(r)$
at the surface $r\!=\!R$:

$$\begin{aligned}
    P - \rho \nu \frac{4}{R^3} C - \alpha \frac{2}{R}
    = p_\infty + \rho \bigg( \frac{1}{R} C' - \frac{1}{2 R^4} C^2 \bigg)
\end{aligned}$$

Isolating for $P$,
and inserting the fact that $R'(t) = v(t)$,
such that $C = r^2 v = R^2 R'$,
yields:

$$\begin{aligned}
    P
    &= p_\infty + \rho \bigg( \frac{1}{R} \dv{(R^2 R')}{t} - \frac{1}{2 R^4} (R^2 R')^2
    + \nu \frac{4}{R^3} (R^2 R') \bigg) + \alpha \frac{2}{R}
    \\
    &= p_\infty + \rho \bigg( 2 (R')^2 + R R'' - \frac{1}{2} (R')^2 + \nu \frac{4}{R} R' \bigg) + \alpha \frac{2}{R}
\end{aligned}$$

Rearranging this and defining $\Delta p \equiv P - p_\infty$
leads to the Rayleigh-Plesset equation:

$$\begin{aligned}
    \boxed{
        \frac{\Delta p}{\rho}
        = R \dv[2]{R}{t} + \frac{3}{2} \bigg( \dv{R}{t} \bigg)^2 + \nu \frac{4}{R} \dv{R}{t} + \frac{\alpha}{\rho} \frac{2}{R}
    }
\end{aligned}$$



## References
1.  B. Lautrup,
    *Physics of continuous matter: exotic and everyday phenomena in the macroscopic world*, 2nd edition,
    CRC Press.