1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
---
title: "Screw pinch"
firstLetter: "S"
publishDate: 2022-03-06
categories:
- Physics
- Plasma physics
date: 2022-01-30T19:27:25+01:00
draft: false
markup: pandoc
---
# Screw pinch
A **pinch** is a type of plasma confinement,
which relies on [magnetic fields](/know/concept/magnetic-field/)
to squeeze the plasma into the desired area.
Examples include tokamaks and stellarators,
although the term *pinch* is typically introduced for simpler 1D confinement.
Suppose that we want to pinch a plasma into a cylindrical shape.
The general way of doing this is called a **screw pinch**.
For simplicity, let the cylinder be infinitely long,
so that it is natural to work in
[cylindrical polar coordinates](/know/concept/cylindrical-polar-coordinates/)
$(r, \theta, z)$.
Using the framework of ideal [magnetohydrodynamics](/know/concept/magnetohydrodynamics/) (MHD),
let us start by assuming that the fluid is stationary,
and that the confining field $\vb{B}$ is fixed.
From the (ideal) generalized Ohm's law, it then follows
that the [electric field](/know/concept/electric-field/) $\vb{E} = 0$:
$$\begin{aligned}
\vb{u}
= 0
\qquad \qquad
\pdv{\vb{u}}{t}
= 0
\qquad \qquad
\pdv{\vb{B}}{t}
= 0
\qquad \qquad
\vb{E}
= 0
\end{aligned}$$
To get the plasma's equilibrium state for a given $\vb{B}$,
we first solve [Ampère's law](/know/concept/maxwells-equations/)
for the current density $\vb{J}$,
and then the MHD momentum equation for the pressure $p$.
Symmetries should be used whenever possible to reduce these equations:
$$\begin{aligned}
\nabla \cross \vb{B}
= \mu_0 \vb{J}
\qquad \qquad
\vb{J} \cross \vb{B}
= \nabla p
\end{aligned}$$
Note that the latter implies that $\nabla p$ is always orthogonal to $\vb{J}$ and $\vb{B}$,
meaning that the current density and magnetic field must follow
surfaces of constant pressure.
## ϴ-pinch
In a so-called **ϴ-pinch**, the confining field $\vb{B}$
is parallel to the $z$-axis, and its magntiude $B_z$ may only depend on $r$.
Concretely, we have:
$$\begin{aligned}
\vb{B}
= B_z(r) \: \vu{e}_z
\end{aligned}$$
Where $\vu{e}_z$ is the basis vector of the $z$-axis.
This $\vb{B}$ confines the plasma thanks to
the [Lorentz force](/know/concept/lorentz-force/),
which makes charged particles gyrate around magnetic field lines.
Using Ampère's law, we find that the resulting current density $\vb{J}$,
expressed in $(r, \theta, z)$:
$$\begin{aligned}
\vb{J}
= \frac{1}{\mu_0} \nabla \cross \vb{B}
= \frac{1}{\mu_0}
\begin{bmatrix}
\displaystyle \frac{1}{r} \pdv{B_z}{\theta} - \pdv{B_\theta}{z} \\
\displaystyle \pdv{B_r}{z} - \pdv{B_z}{r} \\
\displaystyle \frac{1}{r} \Big( \pdv{(r B_\theta)}{r} - \pdv{B_r}{\theta} \Big)
\end{bmatrix}
= -\frac{1}{\mu_0} \pdv{B_z}{r} \: \vu{e}_\theta
\end{aligned}$$
Where we have used that only $B_z$ is nonzero,
and that it only depends on $r$.
This yields a circular current parallel to $\vu{e}_\theta$,
hence the name *ϴ-pinch*.
Next, we use the MHD momentum equation to find the pressure gradient $\nabla p$.
The cross product is easy to evaluate,
since $\vb{B}$ is parallel to $\vu{e}_z$,
and $\vb{J}$ is parallel to $\vu{e}_\theta$:
$$\begin{aligned}
\nabla p
&= \vb{J} \cross \vb{B}
= J_\theta \vu{e}_\theta \cross B_z \vu{e}_z
= J_\theta B_z \vu{e}_r
= - \frac{1}{\mu_0} \pdv{B_z}{r} B_z \: \vu{e}_r
\end{aligned}$$
Consequently, $\nabla p$ is parallel to $\vu{e}_r$,
and only depends on $r$ through $B_z$.
Along the $r$-direction, the above equation can be rewritten
into the following equilibrium condition:
$$\begin{aligned}
\boxed{
\pdv{r} \bigg( p + \frac{B_z^2}{2 \mu_0} \bigg)
= 0
}
\end{aligned}$$
In other words, the parenthesized expression does not depend on $r$.
## Z-pinch
Meanwhile, in a so-called **Z-pinch**,
we create an $r$-dependent current $\vb{J}$ parallel to the $z$-axis:
$$\begin{aligned}
\vb{J}
= J_z(r) \: \vu{e}_z
\end{aligned}$$
We can then deduce $\vb{B}$ from Ampère's law,
using that only $J_z$ is nonzero,
and that $\pdv*{B_r}{\theta} = 0$ due to circular symmetry:
$$\begin{aligned}
\vb{J}
= \frac{1}{\mu_0} \nabla \cross \vb{B}
= \frac{1}{\mu_0}
\begin{bmatrix}
\displaystyle \frac{1}{r} \pdv{B_z}{\theta} - \pdv{B_\theta}{z} \\
\displaystyle \pdv{B_r}{z} - \pdv{B_z}{r} \\
\displaystyle \frac{1}{r} \Big( \pdv{(r B_\theta)}{r} - \pdv{B_r}{\theta} \Big)
\end{bmatrix}
= \frac{1}{\mu_0 r} \pdv{(r B_\theta)}{r} \: \vu{e}_z
\end{aligned}$$
Therefore, $\vb{J}$ induces a circular $\vb{B} = B_\theta(r) \: \vu{e}_\theta$,
which confines the plasma for the same reason as in the ϴ-pinch:
the Lorentz force makes particles gyrate around magnetic field lines.
Next, the resulting pressure gradient $\nabla p$ is found from the MHD momentum equation:
$$\begin{aligned}
\nabla p
&= \vb{J} \cross \vb{B}
= J_z \vb{e}_z \cross B_\theta \vb{e}_\theta
= - J_z B_\theta \vu{e}_r
= - \frac{1}{\mu_0 r} \pdv{(r B_\theta)}{r} B_\theta \: \vu{e}_r
\end{aligned}$$
Once again, $\nabla p$ is parallel to $\vu{e}_r$ and only depends on $r$.
After rearranging, we thus arrive at the following equilibrium condition in the $r$-direction:
$$\begin{aligned}
\boxed{
\pdv{r} \bigg( p + \frac{B_\theta^2}{2 \mu_0} \bigg) + \frac{B_\theta^2}{\mu_0 r}
= 0
}
\end{aligned}$$
## Screw pinch
Thanks to the linearity of electromagnetism,
a ϴ-pinch and Z-pinch can be combined to create a **screw pinch**,
where $\vb{J}$ and $\vb{B}$ both have nonzero $\theta$ and $z$-components.
By performing the above procedure again,
the following equilibrium condition is obtained:
$$\begin{aligned}
\boxed{
\pdv{r} \bigg( p + \frac{B_z^2}{2 \mu_0} + \frac{B_\theta^2}{2 \mu_0} \bigg) + \frac{B_\theta^2}{\mu_0 r}
= 0
}
\end{aligned}$$
Which simply combines the terms of the preceding equations.
Indirectly, this result is relevant for certain types of nuclear fusion reactor,
e.g. the tokamak, which basically consists of a screw pinch bent into a torus.
The resulting equilibrium is given by
the [Grad-Shafranov equation](/know/concept/grad-shafranov-equation/).
## References
1. M. Salewski, A.H. Nielsen,
*Plasma physics: lecture notes*,
2021, unpublished.
|