1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
---
title: "Second quantization"
firstLetter: "S"
publishDate: 2021-02-26
categories:
- Quantum mechanics
- Physics
date: 2021-02-26T10:04:16+01:00
draft: false
markup: pandoc
---
# Second quantization
The **second quantization** is a technique to deal with quantum systems
containing a large and/or variable number of identical particles.
Its exact formulation depends on
whether it is fermions or bosons that are being considered
(see [Pauli exclusion principle](/know/concept/pauli-exclusion-principle/)).
Regardless of whether the system is fermionic or bosonic,
the idea is to change basis to a set of certain many-particle wave functions,
known as the **Fock states**, which are specific members of a **Fock space**,
a special kind of [Hilbert space](/know/concept/hilbert-space/),
with a well-defined number of particles.
For a set of $N$ single-particle energy eigenstates
$\psi_n(x)$ and $N$ identical particles $x_n$, the Fock states are
all the wave functions which contain $n$ particles, for $n$ going from $0$ to $N$.
So for $n = 0$, there is one basis vector with $0$ particles,
for $n = 1$, there are $N$ basis vectors with $1$ particle each,
for $n = 2$, there are $N (N \!-\! 1)$ basis vectors with $2$ particles,
etc.
In this basis, we define the **particle creation operators**
and **particle annihilation operators**,
which respectively add/remove a particle to/from a given state.
In other words, these operators relate the Fock basis vectors
to one another, and are very useful.
The point is to express the system's state in such a way that the
fermionic/bosonic constraints are automatically satisfied, and the
formulae look the same regardless of the number of particles.
## Fermions
Fermions need to obey the Pauli exclusion principle, so each state can only
contain one particle. In this case, the Fock states are given by:
$$\begin{aligned}
\boxed{
\begin{aligned}
n &= 0:
\qquad \ket{0, 0, 0, ...}
\\
n &= 1:
\qquad \ket{1, 0, 0, ...} \quad \ket{0, 1, 0, ...} \quad \ket{0, 0, 1, ...} \quad \cdots
\\
n &= 2:
\qquad \ket{1, 1, 0, ...} \quad \ket{1, 0, 1, ...} \quad \ket{0, 1, 1, ...} \quad \cdots
\end{aligned}
}
\end{aligned}$$
The notation $\ket{N_\alpha, N_\beta, ...}$ is shorthand for
the appropriate [Slater determinants](/know/concept/slater-determinant/).
As an example, take $\ket{0, 1, 0, 1, 1}$,
which contains three particles $a$, $b$ and $c$
in states 2, 4 and 5:
$$\begin{aligned}
\ket{0, 1, 0, 1, 1}
= \Psi(x_a, x_b, x_c)
= \frac{1}{\sqrt{3!}} \det\!
\begin{bmatrix}
\psi_2(x_a) & \psi_4(x_a) & \psi_5(x_a) \\
\psi_2(x_b) & \psi_4(x_b) & \psi_5(x_b) \\
\psi_2(x_c) & \psi_4(x_c) & \psi_5(x_c)
\end{bmatrix}
\end{aligned}$$
The creation operator $\hat{c}_\alpha^\dagger$ and annihilation
operator $\hat{c}_\alpha$ are defined to live up to their name:
they create or destroy a particle in the state $\psi_\alpha$:
$$\begin{aligned}
\boxed{
\begin{aligned}
\hat{c}_\alpha^\dagger \ket{... (N_\alpha\!=\!0) ...}
&= J_\alpha \ket{... (N_\alpha\!=\!1) ...}
\\
\hat{c}_\alpha \ket{... (N_\alpha\!=\!1) ...}
&= J_\alpha \ket{... (N_\alpha\!=\!0) ...}
\end{aligned}
}
\end{aligned}$$
The factor $J_\alpha$ is sometimes known as the **Jordan-Wigner string**,
and is necessary here to enforce the fermionic antisymmetry,
when creating or destroying a particle in the $\alpha$th state:
$$\begin{aligned}
J_\alpha = (-1)^{\sum_{j < \alpha} N_j}
\end{aligned}$$
So, for example, when creating a particle in state 4
of $\ket{0, 1, 1, 0, 1}$, we get the following:
$$\begin{aligned}
\hat{c}_4^\dagger \ket{0, 1, 1, 0, 1}
= (-1)^{0 + 1 + 1} \ket{0, 1, 1, 1, 1}
\end{aligned}$$
The point of the Jordan-Wigner string
is that the order matters when applying the creation and annihilation operators:
$$\begin{aligned}
\hat{c}_1^\dagger \hat{c}_2 \ket{0, 1}
&= \hat{c}_1^\dagger \ket{0, 0}
= \ket{1, 0}
\\
\hat{c}_2 \hat{c}_1^\dagger \ket{0, 1}
&= \hat{c}_2 \ket{1, 1}
= - \ket{1, 0}
\end{aligned}$$
In other words, $\hat{c}_1^\dagger \hat{c}_2 = - \hat{c}_2 \hat{c}_1^\dagger$,
meaning that the anticommutator $\{\hat{c}_2, \hat{c}_1^\dagger\} = 0$.
You can verify for youself that
the general anticommutators of these operators are given by:
$$\begin{aligned}
\boxed{
\{\hat{c}_\alpha, \hat{c}_\beta\} = \{\hat{c}_\alpha^\dagger, \hat{c}_\beta^\dagger\} = 0
\qquad \quad
\{\hat{c}_\alpha, \hat{c}_\beta^\dagger\} = \delta_{\alpha\beta}
}
\end{aligned}$$
Each single-particle state can only contain 0 or 1 fermions,
so these operators **quench** states that would violate this rule.
Note that these are *scalar* zeros:
$$\begin{aligned}
\boxed{
\hat{c}_\alpha^\dagger \ket{... (N_\alpha\!=\!1) ...} = 0
\qquad \quad
\hat{c}_\alpha \ket{... (N_\alpha\!=\!0) ...} = 0
}
\end{aligned}$$
Finally, as has already been suggested by the notation, they are each other's adjoint:
$$\begin{aligned}
\matrixel{... (N_\alpha\!=\!1) ...}{\hat{c}_\alpha^\dagger}{... (N_\alpha\!=\!0) ...}
= \matrixel{...(N_\alpha\!=\!0) ...}{\hat{c}_\alpha}{... (N_\alpha\!=\!1) ...}
\end{aligned}$$
Let us now use these operators to define the **number operator** $\hat{N}_\alpha$ as follows:
$$\begin{aligned}
\boxed{
\hat{N}_\alpha = \hat{c}_\alpha^\dagger \hat{c}_\alpha
}
\end{aligned}$$
Its eigenvalue is the number of particles residing in state $\psi_\alpha$
(look at the hats):
$$\begin{aligned}
\hat{N}_\alpha \ket{... N_\alpha ...}
= N_\alpha \ket{... N_\alpha ...}
\end{aligned}$$
## Bosons
Bosons do not need to obey the Pauli exclusion principle, so multiple can occupy a single state.
The Fock states are therefore as follows:
$$\begin{aligned}
\boxed{
\begin{aligned}
n &= 0:
\qquad \ket{0, 0, 0, ...}
\\
n &= 1:
\qquad \ket{1, 0, 0, ...} \quad \ket{0, 1, 0, ...} \quad \ket{0, 0, 1, ...} \quad \cdots
\\
n &= 2:
\qquad \ket{1, 1, 0, ...} \quad \ket{1, 0, 1, ...} \quad \ket{0, 1, 1, ...} \quad \cdots
\\
&\qquad\:\:\:
\qquad \ket{2, 0, 0, ...} \quad \ket{0, 2, 0, ...} \quad \ket{0, 0, 2, ...} \quad \cdots
\end{aligned}
}
\end{aligned}$$
They must be symmetric under the exchange of two bosons.
To achieve this, the Fock states are represented by Slater *permanents*
rather than determinants.
The boson creation and annihilation operators $\hat{c}_\alpha^\dagger$ and
$\hat{c}_\alpha$ are straightforward:
$$\begin{gathered}
\boxed{
\begin{aligned}
\hat{c}_\alpha^\dagger \ket{... N_\alpha ...}
&= \sqrt{N_\alpha + 1} \: \ket{... (N_\alpha \!+\! 1) ...}
\\
\hat{c}_\alpha \ket{... N_\alpha ...}
&= \sqrt{N_\alpha} \: \ket{... (N_\alpha \!-\! 1) ...}
\end{aligned}
}\end{gathered}$$
Applying the annihilation operator $\hat{c}_\alpha$ when there are zero
particles in $\alpha$ will quench the state:
$$\begin{aligned}
\boxed{
\hat{c}_\alpha \ket{... (N_\alpha\!=\!0) ...} = 0
}
\end{aligned}$$
There is no Jordan-Wigner string, and therefore no sign change when commuting.
Consequently, these operators therefore satisfy the following:
$$\begin{aligned}
\boxed{
[\hat{c}_\alpha, \hat{c}_\beta] = [\hat{c}_\alpha^\dagger, \hat{c}_\beta^\dagger] = 0
\qquad
[\hat{c}_\alpha, \hat{c}_\beta^\dagger] = \delta_{\alpha\beta}
}
\end{aligned}$$
The constant factors applied by $\hat{c}_\alpha^\dagger$ and $\hat{c}_\alpha$
ensure that $\hat{N}_\alpha$ keeps the same nice form:
$$\begin{aligned}
\boxed{
\hat{N}_\alpha = \hat{c}_\alpha^\dagger \hat{c}_\alpha
}
\end{aligned}$$
## Operators
Traditionally, an operator $\hat{V}$ simultaneously acting on $N$ indentical particles
is the sum of the individual single-particle operators $\hat{V}_1$ acting on the $n$th particle:
$$\begin{aligned}
\hat{V}
= \sum_{n = 1}^N \hat{V}_1
\end{aligned}$$
This can be rewritten using the second quantization operators as follows:
$$\begin{aligned}
\boxed{
\hat{V}
= \sum_{\alpha, \beta} \matrixel{\alpha}{\hat{V}_1}{\beta} \hat{c}_\alpha^\dagger \hat{c}_\beta
}
\end{aligned}$$
Where the matrix element $\matrixel{\alpha}{\hat{V}_1}{\beta}$ is to be
evaluated in the normal way:
$$\begin{aligned}
\matrixel{\alpha}{\hat{V}_1}{\beta}
= \int \psi_\alpha^*(\vec{r}) \: \hat{V}_1(\vec{r}) \: \psi_\beta(\vec{r}) \dd{\vec{r}}
\end{aligned}$$
Similarly, given some two-particle operator $\hat{V}$ in first-quantized form:
$$\begin{aligned}
\hat{V}
= \sum_{n \neq m} v(\vec{r}_n, \vec{r}_m)
\end{aligned}$$
We can rewrite this in second-quantized form as follows.
Note the ordering of the subscripts:
$$\begin{aligned}
\boxed{
\hat{V}
= \sum_{\alpha, \beta, \gamma, \delta}
v_{\alpha \beta \gamma \delta} \hat{c}_\alpha^\dagger \hat{c}_\beta^\dagger \hat{c}_\delta \hat{c}_\gamma
}
\end{aligned}$$
Where the constant $v_{\alpha \beta \gamma \delta}$ is defined from the
single-particle wave functions:
$$\begin{aligned}
v_{\alpha \beta \gamma \delta}
= \iint \psi_\alpha^*(\vec{r}_1) \: \psi_\beta^*(\vec{r}_2)
\: v(\vec{r}_1, \vec{r}_2) \: \psi_\gamma(\vec{r}_1)
\: \psi_\delta(\vec{r}_2) \dd{\vec{r}_1} \dd{\vec{r}_2}
\end{aligned}$$
Finally, in the second quantization, changing basis is done in the usual way:
$$\begin{aligned}
\hat{c}_b^\dagger \ket{0}
= \ket{b}
= \sum_{\alpha} \ket{\alpha} \braket{\alpha}{b}
= \sum_{\alpha} \braket{\alpha}{b} \hat{c}_\alpha^\dagger \ket{0}
\end{aligned}$$
Where $\alpha$ and $b$ need not be in the same basis.
With this, we can define the **field operators**,
which create or destroy a particle at a given position $\vec{r}$:
$$\begin{aligned}
\boxed{
\hat{\Psi}^\dagger(\vec{r})
= \sum_{\alpha} \braket{\alpha}{\vec{r}} \hat{c}_\alpha^\dagger
\qquad \quad
\hat{\Psi}(\vec{r})
= \sum_{\alpha} \braket{\vec{r}}{\alpha} \hat{c}_\alpha
}
\end{aligned}$$
## References
1. L.E. Ballentine,
*Quantum mechanics: a modern development*, 2nd edition,
World Scientific.
|