summaryrefslogtreecommitdiff
path: root/content/know/concept/selection-rules/index.pdc
blob: 9fda878b708d6dcf34825b80b9bb8689d2994066 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
---
title: "Selection rules"
firstLetter: "S"
publishDate: 2021-06-02
categories:
- Physics
- Quantum mechanics

date: 2021-05-29T14:42:08+02:00
draft: false
markup: pandoc
---

# Selection rules

In quantum mechanics, it is often necessary to evaluate
matrix elements of the following form,
where $\ell$ and $m$ respectively represent
the total angular momentum and its $z$-component:

$$\begin{aligned}
    \matrixel{f}{\hat{O}}{i}
    = \matrixel{\ell_f m_f}{\hat{O}}{\ell_i m_i}
\end{aligned}$$

Where $\hat{O}$ is an operator, $\ket{i}$ is an initial state, and
$\ket{f}$ is a final state (usually at least; $\ket{i}$ and $\ket{f}$
can be any states). **Selection rules** are requirements on the relations
between $\ell_i$, $\ell_f$, $m_i$ and $m_f$, which, if not met,
guarantee that the above matrix element is zero.


## Parity rules

Let $\hat{O}$ denote any operator which is odd under spatial inversion
(parity):

$$\begin{aligned}
    \hat{\Pi}^\dagger \hat{O} \hat{\Pi} = - \hat{O}
\end{aligned}$$

Where $\hat{\Pi}$ is the parity operator.
We wrap this property of $\hat{O}$
in the states $\ket{\ell_f m_f}$ and $\ket{\ell_i m_i}$:

$$\begin{aligned}
    \matrixel{\ell_f m_f}{\hat{O}}{\ell_i m_i}
    &= - \matrixel{\ell_f m_f}{\hat{\Pi}^\dagger \hat{O} \hat{\Pi}}{\ell_i m_i}
    \\
    &= - \matrixel{\ell_f m_f}{(-1)^{\ell_f} \hat{O} (-1)^{\ell_i}}{\ell_i m_i}
    \\
    &= (-1)^{\ell_f + \ell_i + 1} \matrixel{\ell_f m_f}{\hat{O}}{\ell_i m_i}
\end{aligned}$$

Which clearly can only be true if the exponent is even,
so $\Delta \ell \equiv \ell_f - \ell_i$ must be odd.
This leads to the following selection rule,
often referred to as **Laporte's rule**:

$$\begin{aligned}
    \boxed{
        \Delta \ell \:\:\text{is odd}
    }
\end{aligned}$$

If this is not the case,
then the only possible way that the above equation can be satisfied
is if the matrix element vanishes $\matrixel{\ell_f m_f}{\hat{O}}{\ell_i m_i} = 0$.
We can derive an analogous rule for
any operator $\hat{E}$ which is even under parity:

$$\begin{aligned}
    \hat{\Pi}^\dagger \hat{E} \hat{\Pi} = \hat{E}
    \quad \implies \quad
    \boxed{
        \Delta \ell \:\:\text{is even}
    }
\end{aligned}$$


## Dipole rules

Arguably the most common operator found in such matrix elements
is a position vector operator, like $\vu{r}$ or $\hat{x}$,
and the associated selection rules are known as **dipole rules**.

For the $z$-component of angular momentum $m$ we have the following:

$$\begin{aligned}
    \boxed{
        \Delta m = 0 \:\:\mathrm{or}\: \pm 1
    }
\end{aligned}$$

<div class="accordion">
<input type="checkbox" id="proof-dipole-m"/>
<label for="proof-dipole-m">Proof</label>
<div class="hidden">
<label for="proof-dipole-m">Proof.</label>
We know that the angular momentum $z$-component operator $\hat{L}_z$ satisfies:

$$\begin{aligned}
    \comm*{\hat{L}_z}{\hat{x}} = i \hbar \hat{y}
    \qquad
    \comm*{\hat{L}_z}{\hat{y}} = - i \hbar \hat{x}
    \qquad
    \comm*{\hat{L}_z}{\hat{z}} = 0
\end{aligned}$$

We take the first relation,
and wrap it in $\bra{\ell_f m_f}$ and $\ket{\ell_i m_i}$, giving:

$$\begin{aligned}
    i \hbar \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i}
    &= \matrixel{\ell_f m_f}{\hat{L}_z \hat{x}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{x} \hat{L}_z}{\ell_i m_i}
    \\
    &= \hbar m_f \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i} - \hbar m_i \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i}
    \\
    &= \hbar (m_f - m_i) \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i}
\end{aligned}$$

Next, we do the same thing with the second relation, for $[\hat{L}_z, \hat{y}]$, giving:

$$\begin{aligned}
    - i \hbar \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i}
    &= \matrixel{\ell_f m_f}{\hat{L}_z \hat{y}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{y} \hat{L}_z}{\ell_i m_i}
    \\
    &= \hbar m_f \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} - \hbar m_i \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i}
    \\
    &= \hbar (m_f - m_i) \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i}
\end{aligned}$$

Respectively isolating the two above results for $\hat{x}$ and $\hat{y}$,
we arrive at these equations:

$$\begin{aligned}
    \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i}
    &= i (m_f - m_i) \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i}
    \\
    \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i}
    &= - i (m_f - m_i) \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i}
\end{aligned}$$

By inserting the first into the second,
we find (part of) the selection rule:

$$\begin{aligned}
    \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i}
    &= (m_f - m_i)^2 \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i}
\end{aligned}$$

This can only be true if $\Delta m = \pm 1$,
unless the inner products of $\hat{x}$ and $\hat{y}$ are zero,
in which case we cannot say anything about $\Delta m$ yet.
Assuming the latter, we take the inner product of
the commutator $\comm*{\hat{L}_z}{\hat{z}} = 0$, and find:

$$\begin{aligned}
    0
    &= \matrixel{\ell_f m_f}{\hat{L}_z \hat{z}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{z} \hat{L}_z}{\ell_i m_i}
    \\
    &= \hbar m_f \matrixel{\ell_f m_f}{\hat{z}}{\ell_i m_i} - \hbar m_i \matrixel{\ell_f m_f}{\hat{z}}{\ell_i m_i}
    \\
    &= \hbar (m_f - m_i) \matrixel{\ell_f m_f}{\hat{z}}{\ell_i m_i}
\end{aligned}$$

If $\matrixel{f}{\hat{z}}{i} \neq 0$, we require $\Delta m = 0$.
The previous requirement was $\Delta m = \pm 1$,
implying that $\matrixel{f}{\hat{x}}{i} = \matrixel{f}{\hat{y}}{i} = 0$
whenever $\matrixel{f}{\hat{z}}{i} \neq 0$.
Only if $\matrixel{f}{\hat{z}}{i} = 0$
does the previous rule $\Delta m = \pm 1$ hold,
in which case the inner products of $\hat{x}$ and $\hat{y}$ are nonzero.
</div>
</div>

Meanwhile, for the total angular momentum $\ell$ we have the following:

$$\begin{aligned}
    \boxed{
        \Delta \ell = \pm 1
    }
\end{aligned}$$

<div class="accordion">
<input type="checkbox" id="proof-dipole-l"/>
<label for="proof-dipole-l">Proof</label>
<div class="hidden">
<label for="proof-dipole-l">Proof.</label>
We start from the following relation
(which is already quite a chore to prove):

$$\begin{aligned}
    \comm{\hat{L}^2}{\comm*{\hat{L}^2}{\vu{r}}}
    = 2 \hbar^2 (\vu{r} \hat{L}^2 + \hat{L}^2 \vu{r})
\end{aligned}$$

<div class="accordion">
<input type="checkbox" id="proof-dipole-l-comm"/>
<label for="proof-dipole-l-comm">Proof</label>
<div class="hidden">
<label for="proof-dipole-l-comm">Proof.</label>
To begin with, we want to find the commutator of $\hat{L}^2$ and $\hat{x}$:

$$\begin{aligned}
    \comm*{\hat{L}^2}{\hat{x}}
    &= \comm*{\hat{L}_x^2}{\hat{x}} + \comm*{\hat{L}_y^2}{\hat{x}} + \comm*{\hat{L}_z^2}{\hat{x}}
    = \comm*{\hat{L}_y^2}{\hat{x}} + \comm*{\hat{L}_z^2}{\hat{x}}
    \\
    &= \hat{L}_y \comm*{\hat{L}_y}{\hat{x}} + \comm*{\hat{L}_y}{\hat{x}} \hat{L}_y
    + \hat{L}_z \comm*{\hat{L}_z}{\hat{x}} + \comm*{\hat{L}_z}{\hat{x}} \hat{L}_z
\end{aligned}$$

Evaluating these commutators gives us:

$$\begin{aligned}
    \comm*{\hat{L}_y}{\hat{x}}
    &= \comm*{\hat{z} \hat{p}_x}{\hat{x}} - \comm*{\hat{x} \hat{p}_z}{\hat{x}}
    = \hat{z} \comm*{\hat{p}_x}{\hat{x}} + \comm*{\hat{z}}{\hat{x}} \hat{p}_x
    - \hat{x} \comm*{\hat{p}_z}{\hat{x}} - \comm*{\hat{x}}{\hat{x}} \hat{p}_z
    = - i \hbar \hat{z}
    \\
    \comm*{\hat{L}_z}{\hat{x}}
    &= \comm*{\hat{x} \hat{p}_y}{\hat{x}} - \comm*{\hat{y} \hat{p}_x}{\hat{x}}
    = \hat{x} \comm*{\hat{p}_y}{\hat{x}} + \comm*{\hat{x}}{\hat{x}} \hat{p}_y
    - \hat{y} \comm*{\hat{p}_x}{\hat{x}} - \comm*{\hat{y}}{\hat{x}} \hat{p}_x
    = i \hbar \hat{y}
\end{aligned}$$

Which we then insert back into the original equation, yielding:

$$\begin{aligned}
    \comm*{\hat{L}^2}{\hat{x}}
    &= i \hbar (- \hat{L}_y \hat{z} - \hat{z} \hat{L}_y + \hat{L}_z \hat{y} + \hat{y} \hat{L}_z)
\end{aligned}$$

This can be simplified by introducing some more commutators:

$$\begin{aligned}
    \comm*{\hat{L}^2}{\hat{x}}
    &= i \hbar \big( \!-\! ( \comm*{\hat{L}_y}{\hat{z}} + \hat{z} \hat{L}_y ) - \hat{z} \hat{L}_y
    + ( \comm*{\hat{L}_z}{\hat{y}} + \hat{y} \hat{L}_z ) + \hat{y} \hat{L}_z \big)
\end{aligned}$$

Evaluating these commutators gives us:

$$\begin{aligned}
    \comm*{\hat{L}_y}{\hat{z}}
    &= \comm*{\hat{z} \hat{p}_x}{\hat{z}} - \comm*{\hat{x} \hat{p}_z}{\hat{z}}
    = \hat{z} \comm*{\hat{p}_x}{\hat{z}} + \comm*{\hat{z}}{\hat{z}} \hat{p}_x
    - \hat{x} \comm*{\hat{p}_z}{\hat{z}} - \comm*{\hat{x}}{\hat{z}} \hat{p}_z
    = i \hbar \hat{x}
    \\
    \comm*{\hat{L}_z}{\hat{y}}
    &= \comm*{\hat{x} \hat{p}_y}{\hat{y}} - \comm*{\hat{y} \hat{p}_x}{\hat{y}}
    = \hat{x} \comm*{\hat{p}_y}{\hat{y}} + \comm*{\hat{x}}{\hat{y}} \hat{p}_y
    - \hat{y} \comm*{\hat{p}_x}{\hat{y}} - \comm*{\hat{y}}{\hat{y}} \hat{p}_x
    = - i \hbar \hat{x}
\end{aligned}$$

Substituting these then leads us to the first milestone of this proof:

$$\begin{aligned}
    \comm*{\hat{L}^2}{\hat{x}}
    &= i \hbar \big( \!-\! i \hbar \hat{x} - \hat{z} \hat{L}_y - \hat{z} \hat{L}_y
    - i \hbar \hat{x} + \hat{y} \hat{L}_z + \hat{y} \hat{L}_z \big)
    \\
    &= 2 i \hbar (\hat{y} \hat{L}_z - \hat{z} \hat{L}_y - i \hbar \hat{x})
\end{aligned}$$

Repeating this process for $\comm*{\hat{L}^2}{\hat{y}}$ and $\comm*{\hat{L}^2}{\hat{z}}$,
we find analogous expressions:

$$\begin{aligned}
    \comm*{\hat{L}^2}{\hat{y}}
    &= 2 i \hbar (\hat{z} \hat{L}_x - \hat{x} \hat{L}_z - i \hbar \hat{y})
    \\
    \comm*{\hat{L}^2}{\hat{z}}
    &= 2 i \hbar (\hat{x} \hat{L}_y - \hat{y} \hat{L}_x - i \hbar \hat{z})
\end{aligned}$$

Next, we take the commutator with $\hat{L}^2$ of the commutator we just found:

$$\begin{aligned}
    \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{x}}}
    &= 2 i \hbar \big(\comm*{\hat{L}^2}{\hat{y} \hat{L}_z} - \comm*{\hat{L}^2}{\hat{z} \hat{L}_y} - i \hbar \comm*{\hat{L}^2}{\hat{x}}\big)
    \\
    &= 2 i \hbar \big( \hat{y} \comm*{\hat{L}^2}{\hat{L}_z} + \comm*{\hat{L}^2}{\hat{y}} \hat{L}_z
    - \hat{z} \comm*{\hat{L}^2}{\hat{L}_y} - \comm*{\hat{L}^2}{\hat{z}} \hat{L}_y
    - i \hbar \comm*{\hat{L}^2}{\hat{x}} \big)
\end{aligned}$$

Where we used that $\comm*{\hat{L}^2}{\hat{L}_y} = \comm*{\hat{L}^2}{\hat{L}_z} = 0$.
The other commutators look familiar:

$$\begin{aligned}
    \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{x}}}
    &= 2 i \hbar \big( \comm*{\hat{L}^2}{\hat{y}} \hat{L}_z
    - \comm*{\hat{L}^2}{\hat{z}} \hat{L}_y
    - i \hbar \comm*{\hat{L}^2}{\hat{x}} \big)
\end{aligned}$$

By inserting the expressions we found earlier for these commutators, we get:

$$\begin{aligned}
    \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{x}}}
    &= - 4 \hbar^2 \big( \hat{z} \hat{L}_x \hat{L}_z - \hat{x} \hat{L}_z^2  - i \hbar \hat{y} \hat{L}_z
    + \hat{y} \hat{L}_x \hat{L}_y - \hat{x} \hat{L}_y^2 + i \hbar \hat{z} \hat{L}_y \big) \\
    &\qquad\qquad + 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big)
\end{aligned}$$

Substituting the well-known commutators
$i \hbar \hat{L}_y = \comm*{\hat{L}_z}{\hat{L}_x}$ and
$i \hbar \hat{L}_z = \comm*{\hat{L}_x}{\hat{L}_y}$:

$$\begin{aligned}
    \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{x}}}
    &= - 4 \hbar^2 \big( \hat{z} \hat{L}_x \hat{L}_z + \hat{y} \hat{L}_x \hat{L}_y
    - \hat{x} \hat{L}_y^2 - \hat{x} \hat{L}_z^2
    + \hat{z} \comm*{\hat{L}_z}{\hat{L}_x} - \hat{y} \comm*{\hat{L}_x}{\hat{L}_y} \big) \\
    &\qquad\qquad + 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big)
    \\
    &= - 4 \hbar^2 \big( \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x
    - \hat{x} \hat{L}_y^2 - \hat{x} \hat{L}_z^2 \big)
    + 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big)
\end{aligned}$$

By definition, $\hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2 = \hat{L}^2$,
which we use to arrive at:

$$\begin{aligned}
    \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{x}}}
    &= - 4 \hbar^2 \big( \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x + \hat{x} \hat{L}_x^2 - \hat{x} \hat{L}^2 \big)
    + 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big)
    \\
    &= - 4 \hbar^2 \big( \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x + \hat{x} \hat{L}_x^2 \big)
    + 2 \hbar^2 \big( \hat{L}^2 \hat{x} + \hat{x} \hat{L}^2 \big)
\end{aligned}$$

The second term is what we want to prove,
so the first term must vanish:

$$\begin{aligned}
    \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x + \hat{x} \hat{L}_x^2
    = (\vu{r} \cdot \vu{L}) \hat{L}_x
    = (\vu{r} \cdot (\vu{r} \cross \vu{p})) \hat{L}_x
    = (\vu{p} \cdot (\vu{r} \cross \vu{r})) \hat{L}_x
    = 0
\end{aligned}$$

Where $\vu{L} = \vu{r} \cross \vu{p}$ by definition,
and the cross product of a vector with itself is zero.

This process can be repeated for
$\comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{y}}}$ and
$\comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{z}}}$,
leading us to:

$$\begin{aligned}
    \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{x}}}
    &= 2 \hbar^2 (\hat{x} \hat{L}^2 + \hat{L}^2 \hat{x})
    \\
    \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{y}}}
    &= 2 \hbar^2 (\hat{y} \hat{L}^2 + \hat{L}^2 \hat{y})
    \\
    \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{z}}}
    &= 2 \hbar^2 (\hat{z} \hat{L}^2 + \hat{L}^2 \hat{z})
\end{aligned}$$

At last, this brings us to the desired equation for $\comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\vu{r}}}$,
with $\vu{r} = (\hat{x}, \hat{y}, \hat{z})$.
</div>
</div>

We then multiply this relation by $\bra{f} = \bra{\ell_f m_f}$ on the left
and $\ket{i} = \ket{\ell_i m_i}$ on the right,
so the right-hand side becomes:

$$\begin{aligned}
    2 \hbar^2 \matrixel{f}{\vu{r} \hat{L}^2 \!\!+\! \hat{L}^2 \!\vu{r}}{i}
    &= 2 \hbar^2 \big( \matrixel{f}{\vu{r} \hat{L}^2}{i} + \matrixel{f}{\hat{L}^2 \vu{r}}{i} \big)
    \\
    &= 2 \hbar^2 \big( \hbar^2 \ell_i (\ell_i \!+\! 1) \matrixel{f}{\vu{r}}{i}
    + \hbar^2 \ell_f (\ell_f \!+\! 1) \matrixel{f}{\vu{r}}{i} \big)
    \\
    &= 2 \hbar^4 \big(\ell_f (\ell_f \!+\! 1) + \ell_i (\ell_i \!+\! 1)\big) \matrixel{f}{\vu{r}}{i}
\end{aligned}$$

And, likewise, the left-hand side becomes:

$$\begin{aligned}
    \matrixel{f}{\comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\vu{r}}}}{i}
    &= \matrixel{f}{\hat{L}^2 \comm*{\hat{L}^2}{\vu{r}}}{i}
    - \matrixel{f}{\comm*{\hat{L}^2}{\vu{r}} \hat{L}^2}{i}
    \\
    &= \hbar^2 \ell_f (\ell_f \!+\! 1) \matrixel{f}{\comm*{\hat{L}^2}{\vu{r}}}{i}
    - \hbar^2 \ell_i (\ell_i \!+\! 1) \matrixel{f}{\comm*{\hat{L}^2}{\vu{r}}}{i}
    \\
    &= \hbar^2 \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big) \matrixel{f}{\comm*{\hat{L}^2}{\vu{r}}}{i}
    \\
    &= \hbar^2 \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big)
    \big( \matrixel{f}{\hat{L}^2 \vu{r}}{i} - \matrixel{f}{\vu{r} \hat{L}^2}{i} \big)
    \\
    &= \hbar^4 \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big)^2 \matrixel{f}{\vu{r}}{i}
\end{aligned}$$

Obviously, both sides are equal to each other,
leading to the following equation:

$$\begin{aligned}
    2 \ell_f (\ell_f \!+\! 1) + 2 \ell_i (\ell_i \!+\! 1)
    &= \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big)^2
\end{aligned}$$

To proceed, we rewrite the right-hand side like so:

$$\begin{aligned}
    \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big)^2
    &= \big( \ell_f^2 - \ell_i^2 + \ell_f - \ell_i \big)^2
    \\
    &= \big( (\ell_f + \ell_i) (\ell_f - \ell_i) + (\ell_f - \ell_i) \big)^2
    \\
    &= (\ell_f + \ell_i)^2 (\ell_f - \ell_i)^2 + 2 (\ell_f + \ell_i) (\ell_f - \ell_i)^2 + (\ell_f - \ell_i)^2
    \\
    &= \big( (\ell_f + \ell_i)^2 + 2 (\ell_f + \ell_i) + 1 \big) (\ell_f - \ell_i)^2
    \\
    &= (\ell_f + \ell_i + 1)^2 (\ell_f - \ell_i)^2
\end{aligned}$$

And then we do the same to the left-hand side, yielding:

$$\begin{aligned}
    2 (\ell_f^2 + \ell_i^2 + \ell_f + \ell_i)
    &= 2 \ell_f^2 + 2 \ell_i^2 + 2 \ell_f \ell_i - 2 \ell_f \ell_i + 2 \ell_f + 2 \ell_i + 1 - 1
    \\
    &= (\ell_f + \ell_i + 1)^2 + \ell_f^2 + \ell_i^2 - 2 \ell_f \ell_i - 1
    \\
    &= (\ell_f + \ell_i + 1)^2 + (\ell_f - \ell_i)^2 - 1
\end{aligned}$$

The equation above has thus been simplified to the following form:

$$\begin{aligned}
    (\ell_f + \ell_i + 1)^2 + (\ell_f - \ell_i)^2 - 1
    &= (\ell_f + \ell_i + 1)^2 (\ell_f - \ell_i)^2
\end{aligned}$$

Rearranging yields a product equal to zero,
so one or both of the factors must vanish:

$$\begin{aligned}
    0
    &= (\ell_f + \ell_i + 1)^2 (\ell_f - \ell_i)^2 - (\ell_f + \ell_i + 1)^2 - (\ell_f - \ell_i)^2 + 1
    \\
    &= \big( (\ell_f + \ell_i + 1)^2 - 1 \big) \big( (\ell_f - \ell_i)^2 - 1 \big)
\end{aligned}$$

The first factor is zero if $\ell_f = \ell_i = 0$,
in which case the matrix element $\matrixel{f}{\vu{r}}{i} = 0$ anyway.
The other, non-trivial option is therefore:

$$\begin{aligned}
    (\ell_f - \ell_i)^2
    = 1
\end{aligned}$$
</div>
</div>


## Rotational rules

Given a general (pseudo)scalar operator $\hat{s}$,
which, by nature, must satisfy the
following relations with the angular momentum operators:

$$\begin{aligned}
    \comm*{\hat{L}^2}{\hat{s}} = 0
    \qquad
    \comm*{\hat{L}_z}{\hat{s}} = 0
    \qquad
    \comm*{\hat{L}_{\pm}}{\hat{s}} = 0
\end{aligned}$$

Where $\hat{L}_\pm \equiv \hat{L}_x \pm i \hat{L}_y$.
The inner product of any such $\hat{s}$ must obey these selection rules:

$$\begin{aligned}
    \boxed{
        \Delta \ell = 0
    }
    \qquad \quad
    \boxed{
        \Delta m = 0
    }
\end{aligned}$$

It is common to write this in the following more complete way, where
$\matrixel{\ell_f}{|\hat{s}|}{\ell_i}$ is the **reduced matrix element**,
which is identical to $\matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i}$, but
with a different notation to say that it does not depend on $m_f$ or $m_i$:

$$\begin{aligned}
    \boxed{
        \matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i}
        = \delta_{\ell_f \ell_i} \delta_{m_f m_i} \matrixel{\ell_f}{|\hat{s}|}{\ell_i}
    }
\end{aligned}$$

<div class="accordion">
<input type="checkbox" id="proof-rot-scalar"/>
<label for="proof-rot-scalar">Proof</label>
<div class="hidden">
<label for="proof-rot-scalar">Proof.</label>
Firstly, we look at the commutator of $\hat{s}$ with the $z$-component $\hat{L}_z$:
$$\begin{aligned}
    0
    = \matrixel{\ell_f m_f}{\comm*{\hat{L}_z}{\hat{s}}}{\ell_i m_i}
    &= \matrixel{\ell_f m_f}{\hat{L}_z \hat{s}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{s} \hat{L}_z}{\ell_i m_i}
    \\
    &= \hbar (m_f - m_i) \matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i}
\end{aligned}$$

Which can only be true if $m_f \!-\! m_i = 0$, unless,
of course, $\matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i} = 0$ by itself.

Secondly, we look at the commutator of $\hat{s}$ with the total angular momentum $\hat{L}^2$:

$$\begin{aligned}
    0
    = \matrixel{\ell_f m_f}{\comm*{\hat{L}^2}{\hat{s}}}{\ell_i m_i}
    &= \matrixel{\ell_f m_f}{\hat{L}^2 \hat{s}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{s} \hat{L}^2}{\ell_i m_i}
    \\
    &= \hbar^2 \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big) \matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i}
\end{aligned}$$

Assuming $\matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i} \neq 0$,
this can only be satisfied if the following holds:

$$\begin{aligned}
    0
    = \ell_f^2 + \ell_f - \ell_i^2 - \ell_i
    = (\ell_f + \ell_i) (\ell_f - \ell_i) + (\ell_f - \ell_i)
\end{aligned}$$

If $\ell_f = \ell_i = 0$ this equation is trivially satisfied.
Otherwise, the only option is $\ell_f \!-\! \ell_i = 0$,
which is another part of the selection rule.

Thirdly, we look at the commutator of $\hat{s}$ with the ladder operators $\hat{L}_\pm$:

$$\begin{aligned}
    0
    = \matrixel{\ell_f m_f}{\comm*{\hat{L}_\pm}{\hat{s}}}{\ell_i m_i}
    &= \matrixel{\ell_f m_f}{\hat{L}_\pm \hat{s}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{s} \hat{L}_\pm}{\ell_i m_i}
    \\
    &= C_f \matrixel{\ell_f (m_f\!\mp\!1)}{\hat{s}}{\ell_i m_i} - C_i \matrixel{\ell_f m_f}{\hat{s}}{\ell_i (m_i\!\pm\!1)}
\end{aligned}$$

Where $C_f$ and $C_i$ are constants given below.
We already know that $\Delta \ell = 0$ and $\Delta m = 0$,
so the above matrix elements are only nonzero if $m_f = m_i \pm 1$.
Therefore:

$$\begin{aligned}
    C_i
    &= \hbar \sqrt{\ell_i (\ell_i + 1) - m_i (m_i \pm 1)}
    \\
    C_f
    &= \hbar \sqrt{\ell_f (\ell_f \!+\! 1) - m_f (m_f \!\mp\! 1)}
    \\
    &= \hbar \sqrt{\ell_f (\ell_f \!+\! 1) - (m_i \!\pm\! 1) (m_i \!\pm\! 1 \!\mp\! 1)}
    \\
    &= \hbar \sqrt{\ell_f (\ell_f \!+\! 1) - m_i (m_i \!\pm\! 1)}
\end{aligned}$$

In other words, $C_f = C_i$. The above equation therefore reduces to:

$$\begin{aligned}
    \matrixel{\ell_f m_i}{\hat{s}}{\ell_i m_i}
    &= \matrixel{\ell_f (m_i \!\pm\! 1)}{\hat{s}}{\ell_i (m_i\!\pm\!1)}
\end{aligned}$$

Which means that the value of the matrix element
does not depend on $m_i$ (or $m_f$) at all.
</div>
</div>

Similarly, given a general (pseudo)vector operator $\vu{V}$,
which, by nature, must satisfy the following commutation relations,
where $\hat{V}_\pm \equiv \hat{V}_x \pm i \hat{V}_y$:

$$\begin{gathered}
    \comm*{\hat{L}_z}{\hat{V}_z} = 0
    \qquad
    \comm*{\hat{L}_z}{\hat{V}_{\pm}} = \pm \hbar \hat{V}_{\pm}
    \qquad
    \comm*{\hat{L}_{\pm}}{\hat{V}_z} = \mp \hbar \hat{V}_{\pm}
    \\
    \comm*{\hat{L}_{\pm}}{\hat{V}_{\pm}} = 0
    \qquad
    \comm*{\hat{L}_{\pm}}{\hat{V}_{\mp}} = \pm 2 \hbar \hat{V}_z
\end{gathered}$$

The inner product of any such $\vu{V}$ must obey the following selection rules:

$$\begin{aligned}
    \boxed{
        \Delta \ell
        = 0 \:\:\mathrm{or}\: \pm 1
    }
    \qquad
    \boxed{
        \Delta m
        = 0 \:\:\mathrm{or}\: \pm 1
    }
\end{aligned}$$

In fact, the complete result involves the Clebsch-Gordan coefficients (from spin addition):

$$\begin{gathered}
    \boxed{
        \matrixel{\ell_f m_f}{\hat{V}_{z}}{\ell_i m_i}
        = C^{\ell_i \: 1 \: \ell_f}_{m_i \: 0 \:m_f} \matrixel{\ell_f}{|\hat{V}|}{\ell_i}
    }
    \\
    \boxed{
        \matrixel{\ell_f m_f}{\hat{V}_{+}}{\ell_i m_i}
        = - \sqrt{2} C^{\ell_i \: 1 \: \ell_f}_{m_i \: 1 \:m_f} \matrixel{\ell_f}{|\hat{V}|}{\ell_i}
    }
    \\
    \boxed{
        \matrixel{\ell_f m_f}{\hat{V}_{-}}{\ell_i m_i}
        = \sqrt{2} C^{\ell_i \: 1 \: \ell_f}_{m_i \: -1 \:m_f} \matrixel{\ell_f}{|\hat{V}}{|\ell_i}
    }
\end{gathered}$$


## Superselection rule

Selection rules are not always about atomic electron transitions, or angular momenta even.

According to the **principle of indistinguishability**,
permuting identical particles never leads to an observable difference.
In other words, the particles are fundamentally indistinguishable,
so for any observable $\hat{O}$ and multi-particle state $\ket{\Psi}$, we can say:

$$\begin{aligned}
    \matrixel{\Psi}{\hat{O}}{\Psi}
    = \matrixel*{\hat{P} \Psi}{\hat{O}}{\hat{P} \Psi}
\end{aligned}$$

Where $\hat{P}$ is an arbitrary permutation operator.
Indistinguishability implies that $\comm*{\hat{P}}{\hat{O}} = 0$
for all $\hat{O}$ and $\hat{P}$,
which lets us prove the above equation, using that $\hat{P}$ is unitary:

$$\begin{aligned}
    \matrixel*{\hat{P} \Psi}{\hat{O}}{\hat{P} \Psi}
    = \matrixel{\Psi}{\hat{P}^{-1} \hat{O} \hat{P}}{\Psi}
    = \matrixel{\Psi}{\hat{P}^{-1} \hat{P} \hat{O}}{\Psi}
    = \matrixel{\Psi}{\hat{O}}{\Psi}
\end{aligned}$$

Consider a symmetric state $\ket{s}$ and an antisymmetric state $\ket{a}$
(see [Pauli exclusion principle](/know/concept/pauli-exclusion-principle/)),
which obey the following for a permutation $\hat{P}$:

$$\begin{aligned}
    \hat{P} \ket{s}
    = \ket{s}
    \qquad
    \hat{P} \ket{a}
    = - \ket{a}
\end{aligned}$$

Any obervable $\hat{O}$ then satisfies the equation below,
again thanks to the fact that $\hat{P} = \hat{P}^{-1}$:

$$\begin{aligned}
    \matrixel{s}{\hat{O}}{a}
    = \matrixel*{\hat{P} s}{\hat{O}}{a}
    = \matrixel{s}{\hat{P}^{-1} \hat{O}}{a}
    = \matrixel{s}{\hat{O} \hat{P}}{a}
    = \matrixel*{s}{\hat{O}}{\hat{P} a}
    = - \matrixel{s}{\hat{O}}{a}
\end{aligned}$$

This leads us to the **superselection rule**,
which states that there can never be any interference
between states of different permutation symmetry:

$$\begin{aligned}
    \boxed{
        \matrixel{s}{\hat{O}}{a}
        = 0
    }
\end{aligned}$$



## References
1.  D.J. Griffiths, D.F. Schroeter,
    *Introduction to quantum mechanics*, 3rd edition,
    Cambridge.