summaryrefslogtreecommitdiff
path: root/content/know/concept/wkb-approximation/index.pdc
blob: b8ace290e40161031380ffd96acbaf0738cb8233 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
---
title: "WKB approximation"
firstLetter: "W"
publishDate: 2021-02-22
categories:
- Quantum mechanics
- Physics

date: 2021-02-22T21:38:35+01:00
draft: false
markup: pandoc
---

# WKB approximation

In quantum mechanics, the **Wentzel-Kramers-Brillouin** or simply the **WKB
approximation** is a technique to approximate the wave function $\psi(x)$ of
the one-dimensional time-independent Schrödinger equation. It is an example
of a **semiclassical approximation**, because it tries to find a
balance between classical and quantum physics.

In classical mechanics, a particle travelling in a potential $V(x)$
along a path $x(t)$ has a total energy $E$ as follows, which we
rearrange:

$$\begin{aligned}
    E = \frac{1}{2} m \dot{x}^2 + V(x)
    \quad \implies \quad
    m^2 (x')^2 = 2 m (E - V(x))
\end{aligned}$$

The left-hand side of the rearranged version is simply the momentum squared,
so we define the magnitude of the momentum $p(x)$ accordingly:

$$\begin{aligned}
    p(x) = \sqrt{2 m (E - V(x))}
\end{aligned}$$

Note that this is under the assumption that $E > V$,
which is always true in classical mechanics,
but not necessarily in quantum mechanics.
We rewrite the Schrödinger equation:

$$\begin{aligned}
    0
    = \dv[2]{\psi}{x} + \frac{2 m}{\hbar^2} (E - V) \psi
    = \dv[2]{\psi}{x} + \frac{p^2}{\hbar^2} \psi
\end{aligned}$$

If $V(x)$ were constant, and by extension $p(x)$ too, then the solution
is easy:

$$\begin{aligned}
    \psi(x)
    = \psi(0) \exp(\pm i p x / \hbar)
\end{aligned}$$

This form is reminiscent of the generator of translations. In practice,
$V(x)$ and $p(x)$ vary with $x$, but we can still salvage this solution
by assuming that $V(x)$ varies slowly compared to the wavelength
$\lambda(x) = 2 \pi / k(x)$, where $k(x) = p(x) / \hbar$ is the
wavenumber. The solution then takes the following form:

$$\begin{aligned}
    \psi(x)
    = \psi(0) \exp\!\Big(\!\pm\! \frac{i}{\hbar} \int_0^x \chi(\xi) \dd{\xi} \Big)
\end{aligned}$$

$\chi(\xi)$ is an unknown function, which intuitively should be related
to $p(x)$. The purpose of the integral is to accumulate the change of
$\chi$ from the initial point $0$ to the current position $x$.
Let us write this as an indefinite integral for convenience:

$$\begin{aligned}
    \psi(x)
    = \psi(0) \exp\!\bigg( \!\pm\! \frac{i}{\hbar} \Big( \int \chi(x) \dd{x} - C \Big) \bigg)
\end{aligned}$$

Where $C = \int \chi(x) \dd{x} |_{x = 0}$ is the initial point of the definite integral.
For simplicity, we absorb the constant $C$ into $\psi(0)$.
We can now clearly see that:

$$\begin{aligned}
    \psi'(x) = \pm \frac{i}{\hbar} \chi(x) \psi(x)
    \quad \implies \quad
    \chi(x) = \pm \frac{\hbar}{i} \frac{\psi'(x)}{\psi(x)}
\end{aligned}$$

Next, we insert this ansatz for $\psi(x)$ into the Schrödinger equation
to get:

$$\begin{aligned}
    0
    &= \pm \frac{i}{\hbar} \dv{(\chi \psi)}{x} + \frac{p^2}{\hbar^2} \psi
    = \pm \frac{i}{\hbar} \chi' \psi \pm \frac{i}{\hbar} \chi \psi' + \frac{p^2}{\hbar^2} \psi
    = \pm \frac{i}{\hbar} \chi' \psi - \frac{1}{\hbar^2} \chi^2 \psi + \frac{p^2}{\hbar^2} \psi
\end{aligned}$$

Dividing out $\psi$ and rearranging gives us the following, which is
still exact:

$$\begin{aligned}
    \pm \frac{\hbar}{i} \chi'
    = p^2 - \chi^2
\end{aligned}$$

Next, we expand this as a power series of $\hbar$. This is why it is
called *semiclassical*: so far we have been using full quantum mechanics,
but now we are treating $\hbar$ as a parameter which controls the
strength of quantum effects:

$$\begin{aligned}
    \chi(x) = \chi_0(x) + \frac{\hbar}{i} \chi_1(x) + \frac{\hbar^2}{i^2} \chi_2(x) + ...
\end{aligned}$$

The heart of the WKB approximation is its assumption that quantum effects are
sufficiently weak (i.e. $\hbar$ is small enough) that we only need to
consider the first two terms, or, more specifically, that we only go up to
$\hbar$, not $\hbar^2$ or higher. Inserting the first two terms of this
expansion into the equation:

$$\begin{aligned}
    \pm \frac{\hbar}{i} \chi_0'
    &= p^2 - \chi_0^2 - 2 \frac{\hbar}{i} \chi_0 \chi_1
\end{aligned}$$

Where we have discarded all terms containing $\hbar^2$. At order
$\hbar^0$, we then get the expected classical result for $\chi_0(x)$:

$$\begin{aligned}
    0 = p^2 - \chi_0^2
    \quad \implies \quad
    \chi_0(x) = p(x)
\end{aligned}$$

While at order $\hbar$, we get the following quantum-mechanical
correction:

$$\begin{aligned}
    \pm \frac{\hbar}{i} \chi_0'
    = - 2 \frac{\hbar}{i} \chi_0 \chi_1
    \quad \implies \quad
    \chi_1(x) = \mp \frac{1}{2} \frac{\chi_0'(x)}{\chi_0(x)}
\end{aligned}$$

Therefore, our approximated wave function $\psi(x)$ currently looks like
this:

$$\begin{aligned}
    \psi(x)
    &\approx \psi(0) \exp\!\Big( \!\pm\! \frac{i}{\hbar} \int \chi_0(x) \dd{x} \Big) \exp\!\Big( \!\pm\! \int \chi_1(x) \dd{x} \Big)
\end{aligned}$$

We can reduce the latter exponential using integration by substitution:

$$\begin{aligned}
    \exp\!\Big( \!\pm\! \int \chi_1(x) \dd{x} \Big)
    &= \exp\!\Big( \!-\! \frac{1}{2} \int \frac{\chi_0'(x)}{\chi_0(x)} \dd{x} \Big)
    = \exp\!\Big( \!-\! \frac{1}{2} \int \frac{1}{\chi_0}\:d\chi_0 \Big)
    \\
    &= \exp\!\Big( \!-\! \frac{1}{2} \ln\!\big(\chi_0(x)\big) \Big)
    = \frac{1}{\sqrt{\chi_0(x)}}
    = \frac{1}{\sqrt{p(x)}}
\end{aligned}$$

In the WKB approximation for $E > V$, the solution $\psi(x)$ is thus
given by:

$$\begin{aligned}
    \boxed{
        \psi(x) \approx \frac{A}{\sqrt{p(x)}} \exp\!\Big( \!\pm\! \frac{i}{\hbar} \int p(x) \dd{x} \Big)
    }
\end{aligned}$$

What if $E < V$? In classical mechanics, this is just not allowed; a ball
cannot simply go through a potential bump without the necessary energy.
On the other hand, in quantum physics, particles can **tunnel** through barriers.

Luckily, the only thing we need to change for the WKB approximation
is to let the momentum take imaginary values:

$$\begin{aligned}
    p(x) = \sqrt{2 m (E - V(x))} = i \sqrt{2 m (V(x) - E)}
\end{aligned}$$

And then take the absolute value in the appropriate place in front of $\psi(x)$:

$$\begin{aligned}
    \boxed{
        \psi(x) \approx \frac{A}{\sqrt{|p(x)|}} \exp\!\Big( \!\pm\! \frac{i}{\hbar} \int p(x) \dd{x} \Big)
    }
\end{aligned}$$

In the classical region ($E > V$), the wave function oscillates, and
in the quantum-physical region ($E < V$) it is exponential.
Note that for $E \approx V$ the approximation breaks down,
because of the appearance of $p(x)$ in the denominator.


## References
1.  D.J. Griffiths, D.F. Schroeter,
    *Introduction to quantum mechanics*, 3rd edition,
    Cambridge.
2.  R. Shankar,
    *Principles of quantum mechanics*, 2nd edition,
    Springer.