diff options
| author | Prefetch | 2023-01-03 19:48:17 +0100 | 
|---|---|---|
| committer | Prefetch | 2023-01-03 19:48:27 +0100 | 
| commit | aeacfca5aea5df7c107cf0c12e72ab5d496c96e1 (patch) | |
| tree | 6d89742cdf29fe0ad46590586858396a4c560fca | |
| parent | b1a9b1b9b2f04efd6dc39bd2a02c544d34d1259c (diff) | |
More improvements to knowledge base
| -rw-r--r-- | source/know/concept/amplitude-rate-equations/index.md | 94 | ||||
| -rw-r--r-- | source/know/concept/bell-state/index.md | 41 | ||||
| -rw-r--r-- | source/know/concept/dielectric-function/index.md | 65 | ||||
| -rw-r--r-- | source/know/concept/einstein-coefficients/index.md | 5 | ||||
| -rw-r--r-- | source/know/concept/fermis-golden-rule/index.md | 2 | ||||
| -rw-r--r-- | source/know/concept/ghz-paradox/index.md | 41 | ||||
| -rw-r--r-- | source/know/concept/hellmann-feynman-theorem/index.md | 31 | ||||
| -rw-r--r-- | source/know/concept/maxwell-bloch-equations/index.md | 25 | ||||
| -rw-r--r-- | source/know/concept/no-cloning-theorem/index.md | 1 | ||||
| -rw-r--r-- | source/know/concept/quantum-gate/index.md | 85 | ||||
| -rw-r--r-- | source/know/concept/rabi-oscillation/index.md | 21 | ||||
| -rw-r--r-- | source/know/concept/rotating-wave-approximation/index.md | 12 | ||||
| -rw-r--r-- | source/know/concept/salt-equation/index.md | 32 | ||||
| -rw-r--r-- | source/know/concept/time-dependent-perturbation-theory/index.md | 73 | ||||
| -rw-r--r-- | source/know/concept/toffoli-gate/index.md | 14 | 
15 files changed, 316 insertions, 226 deletions
diff --git a/source/know/concept/amplitude-rate-equations/index.md b/source/know/concept/amplitude-rate-equations/index.md new file mode 100644 index 0000000..0ca3248 --- /dev/null +++ b/source/know/concept/amplitude-rate-equations/index.md @@ -0,0 +1,94 @@ +--- +title: "Amplitude rate equations" +sort_title: "Amplitude rate equations" +date: 2023-01-03 +categories: +- Physics +- Quantum mechanics +layout: "concept" +--- + +In quantum mechanics, the **amplitude rate equations** give +the evolution of a quantum state's superposition coefficients through time. +They are known as the precursors for +[time-dependent perturbation theory](/know/concept/time-dependent-perturbation-theory/), +but by themselves they are exact and widely applicable. + +Let $$\hat{H}_0$$ be a "simple" time-independent part +of the full Hamiltonian, +and $$\hat{H}_1$$ a time-varying other part, +whose contribution need not be small: + +$$\begin{aligned} +    \hat{H}(t) = \hat{H}_0 + \hat{H}_1(t) +\end{aligned}$$ + +We assume that the time-independent problem +$$\hat{H}_0 \Ket{n} = E_n \Ket{n}$$ has already been solved, +such that its general solution is a superposition as follows: + +$$\begin{aligned} +    \Ket{\Psi_0(t)} = \sum_{n} c_n \Ket{n} e^{- i E_n t / \hbar} +\end{aligned}$$ + +Since these $$\Ket{n}$$ form a complete basis, +the full solution for $$\hat{H}_0 + \hat{H}_1$$ can be written in the same form, +but now with time-dependent coefficients $$c_n(t)$$: + +$$\begin{aligned} +    \Ket{\Psi(t)} = \sum_{n} c_n(t) \Ket{n} e^{- i E_n t / \hbar} +\end{aligned}$$ + +We put this ansatz into the full Schrödinger equation, +and use the known solution for $$\hat{H}_0$$: + +$$\begin{aligned} +    0 +    &= \hat{H}_0 \Ket{\Psi(t)} + \hat{H}_1 \Ket{\Psi(t)} - i \hbar \dv{}{t}\Ket{\Psi(t)} +    \\ +    &= \sum_{n} +    \Big( c_n \hat{H}_0 \Ket{n} + c_n \hat{H}_1 \Ket{n} - c_n E_n \Ket{n} - i \hbar \dv{c_n}{t} \Ket{n} \Big) e^{- i E_n t / \hbar} +    \\ +    &= \sum_{n} \Big( c_n \hat{H}_1 \Ket{n} - i \hbar \dv{c_n}{t} \Ket{n} \Big) e^{- i E_n t / \hbar} +\end{aligned}$$ + +We then take the inner product with an arbitrary stationary basis state $$\Ket{m}$$: + +$$\begin{aligned} +    0 +    &= \sum_{n} \Big( c_n \matrixel{m}{\hat{H}_1}{n} - i \hbar \dv{c_n}{t} \inprod{m}{n} \Big) e^{- i E_n t / \hbar} +\end{aligned}$$ + +Thanks to orthonormality, this moves the latter term outside the summation: + +$$\begin{aligned} +    i \hbar \dv{c_m}{t} e^{- i E_m t / \hbar} +    &= \sum_{n} c_n \matrixel{m}{\hat{H}_1}{n} e^{- i E_n t / \hbar} +\end{aligned}$$ + +We divide by the left-hand exponential and define +$$\omega_{mn} \equiv (E_m - E_n) / \hbar$$ to arrive at +the desired set of amplitude rate equations, +one for each basis state $$\ket{m}$$: + +$$\begin{aligned} +    \boxed{ +        i \hbar \dv{c_m}{t} +        = \sum_{n} c_n(t) \matrixel{m}{\hat{H}_1(t)}{n} e^{i \omega_{mn} t} +    } +\end{aligned}$$ + +We have not made any approximations, +so it is possible to exactly solve for $$c_n(t)$$ in some simple systems. +This is worth pointing out, because these equations' most famous uses +are for deriving time-dependent-perturbation theory +(by making a truncated power series approximation) +and [Rabi oscillation](/know/concept/rabi-oscillation/) +(by making the [rotating wave approximation](/know/concept/rotating-wave-approximation/)). + + + +## References +1.  D.J. Griffiths, D.F. Schroeter, +    *Introduction to quantum mechanics*, 3rd edition, +    Cambridge. diff --git a/source/know/concept/bell-state/index.md b/source/know/concept/bell-state/index.md index f454264..fa289de 100644 --- a/source/know/concept/bell-state/index.md +++ b/source/know/concept/bell-state/index.md @@ -16,16 +16,16 @@ $$\begin{aligned}      \boxed{          \begin{aligned}              \ket{\Phi^{\pm}} -            &= \frac{1}{\sqrt{2}} \Big( \Ket{0}_A \Ket{0}_B \pm \Ket{1}_A \Ket{1}_B \Big) +            &= \frac{1}{\sqrt{2}} \Big( \ket{0}_A \ket{0}_B \pm \ket{1}_A \ket{1}_B \Big)              \\              \ket{\Psi^{\pm}} -            &= \frac{1}{\sqrt{2}} \Big( \Ket{0}_A \Ket{1}_B \pm \Ket{1}_A \Ket{0}_B \Big) +            &= \frac{1}{\sqrt{2}} \Big( \ket{0}_A \ket{1}_B \pm \ket{1}_A \ket{0}_B \Big)          \end{aligned}      }  \end{aligned}$$ -Where e.g. $$\Ket{0}_A \Ket{1}_B = \Ket{0}_A \otimes \Ket{1}_B$$ -is the tensor product of qubit $$A$$ in state $$\Ket{0}$$ and $$B$$ in $$\Ket{1}$$. +Where e.g. $$\ket{0}_A \ket{1}_B = \ket{0}_A \otimes \ket{1}_B$$ +is the tensor product of qubit $$A$$ in state $$\ket{0}$$ and $$B$$ in $$\ket{1}$$.  These states form an orthonormal basis for the two-qubit  [Hilbert space](/know/concept/hilbert-space/). @@ -37,7 +37,7 @@ Consider the following pure [density operator](/know/concept/density-operator/):  $$\begin{aligned}      \hat{\rho}      = \ket{\Phi^{+}} \bra{\Phi^{+}} -    &= \frac{1}{2} \Big( \Ket{0}_A \Ket{0}_B + \Ket{1}_A \Ket{1}_B \Big) \Big( \Bra{0}_A \Bra{0}_B + \Bra{1}_A \Bra{1}_B \Big) +    &= \frac{1}{2} \Big( \ket{0}_A \ket{0}_B + \ket{1}_A \ket{1}_B \Big) \Big( \bra{0}_A \bra{0}_B + \bra{1}_A \bra{1}_B \Big)  \end{aligned}$$  The reduced density operator $$\hat{\rho}_A$$ of qubit $$A$$ is then calculated as follows: @@ -45,12 +45,12 @@ The reduced density operator $$\hat{\rho}_A$$ of qubit $$A$$ is then calculated  $$\begin{aligned}      \hat{\rho}_A      &= \Tr_B(\hat{\rho}) -    = \sum_{b = 0, 1} \Bra{b}_B \Big( \ket{\Phi^{+}} \bra{\Phi^{+}} \Big) \Ket{b}_B +    = \sum_{b = 0, 1} \bra{b}_B \Big( \ket{\Phi^{+}} \bra{\Phi^{+}} \Big) \ket{b}_B      \\ -    &= \sum_{b = 0, 1} \Big( \Ket{0}_A \Inprod{b}{0}_B + \Ket{1}_A \Inprod{b}{1}_B \Big) -    \Big( \Bra{0}_A \Inprod{0}{b}_B + \Bra{1}_A \Inprod{1}{b}_B \Big) +    &= \sum_{b = 0, 1} \Big( \ket{0}_A \inprod{b}{0}_B + \ket{1}_A \inprod{b}{1}_B \Big) +    \Big( \bra{0}_A \inprod{0}{b}_B + \bra{1}_A \inprod{1}{b}_B \Big)      \\ -    &= \frac{1}{2} \Big( \Ket{0}_A \Bra{0}_A + \Ket{1}_A \Bra{1}_A \Big) +    &= \frac{1}{2} \Big( \ket{0}_A \bra{0}_A + \ket{1}_A \bra{1}_A \Big)      = \frac{1}{2} \hat{I}  \end{aligned}$$ @@ -59,35 +59,36 @@ The same holds for the other three Bell states,  and is equally true for qubit $$B$$.  This means that a measurement of qubit $$A$$ -has a 50-50 chance to yield $$\Ket{0}$$ or $$\Ket{1}$$. +has a 50-50 chance to yield $$\ket{0}$$ or $$\ket{1}$$.  However, due to the entanglement,  measuring $$A$$ also has consequences for qubit $$B$$:  $$\begin{aligned} -    \big| \Bra{0}_A \! \Bra{0}_B \cdot \ket{\Phi^{+}} \big|^2 -    &= \frac{1}{2} \Big( \Inprod{0}{0}_A \Inprod{0}{0}_B + \Inprod{0}{1}_A \Inprod{0}{1}_B \Big)^2 +    \big| \bra{0}_A \! \bra{0}_B \cdot \ket{\Phi^{+}} \big|^2 +    &= \frac{1}{2} \Big( \inprod{0}{0}_A \inprod{0}{0}_B + \inprod{0}{1}_A \inprod{0}{1}_B \Big)^2      = \frac{1}{2}      \\ -    \big| \Bra{0}_A \! \Bra{1}_B \cdot \ket{\Phi^{+}} \big|^2 -    &= \frac{1}{2} \Big( \Inprod{0}{0}_A \Inprod{1}{0}_B + \Inprod{0}{1}_A \Inprod{1}{1}_B \Big)^2 +    \big| \bra{0}_A \! \bra{1}_B \cdot \ket{\Phi^{+}} \big|^2 +    &= \frac{1}{2} \Big( \inprod{0}{0}_A \inprod{1}{0}_B + \inprod{0}{1}_A \inprod{1}{1}_B \Big)^2      = 0      \\ -    \big| \Bra{1}_A \! \Bra{0}_B \cdot \ket{\Phi^{+}} \big|^2 -    &= \frac{1}{2} \Big( \Inprod{1}{0}_A \Inprod{0}{0}_B + \Inprod{1}{1}_A \Inprod{0}{1}_B \Big)^2 +    \big| \bra{1}_A \! \bra{0}_B \cdot \ket{\Phi^{+}} \big|^2 +    &= \frac{1}{2} \Big( \inprod{1}{0}_A \inprod{0}{0}_B + \inprod{1}{1}_A \inprod{0}{1}_B \Big)^2      = 0      \\ -    \big| \Bra{1}_A \! \Bra{1}_B \cdot \ket{\Phi^{+}} \big|^2 -    &= \frac{1}{2} \Big( \Inprod{1}{0}_A \Inprod{1}{0}_B + \Inprod{1}{1}_A \Inprod{1}{1}_B \Big)^2 +    \big| \bra{1}_A \! \bra{1}_B \cdot \ket{\Phi^{+}} \big|^2 +    &= \frac{1}{2} \Big( \inprod{1}{0}_A \inprod{1}{0}_B + \inprod{1}{1}_A \inprod{1}{1}_B \Big)^2      = \frac{1}{2}  \end{aligned}$$ -As an example, if $$A$$ collapses into $$\Ket{0}$$ due to a measurement, -then $$B$$ instantly also collapses into $$\Ket{0}$$, never $$\Ket{1}$$, +As an example, if $$A$$ collapses into $$\ket{0}$$ due to a measurement, +then $$B$$ instantly also collapses into $$\ket{0}$$, never $$\ket{1}$$,  even if it was not measured.  This was a specific example for $$\ket{\Phi^{+}}$$,  but analogous results can be found for the other Bell states. +  ## References  1.  J.B. Brask,      *Quantum information: lecture notes*, diff --git a/source/know/concept/dielectric-function/index.md b/source/know/concept/dielectric-function/index.md index 529ce2a..d55cc91 100644 --- a/source/know/concept/dielectric-function/index.md +++ b/source/know/concept/dielectric-function/index.md @@ -13,7 +13,8 @@ The **dielectric function** or **relative permittivity** $$\varepsilon_r$$  is a measure of how strongly a given medium counteracts  [electric fields](/know/concept/electric-field/) compared to a vacuum.  Let $$\vb{D}$$ be the applied external field, -and $$\vb{E}$$ the effective field inside the material: +and $$\vb{E}$$ the effective field inside the material, +then $$\varepsilon_r$$ is defined such that:  $$\begin{aligned}      \boxed{ @@ -23,7 +24,7 @@ $$\begin{aligned}  If $$\varepsilon_r$$ is large, then $$\vb{D}$$ is strongly suppressed,  because the material's electrons and nuclei move to create an opposing field. -In order for $$\varepsilon_r$$ to be well defined, we only consider linear media, +In order for $$\varepsilon_r$$ to be well-defined, we only consider *linear* media,  where the induced polarization $$\vb{P}$$ is proportional to $$\vb{E}$$.  We would like to find an alternative definition of $$\varepsilon_r$$. @@ -54,13 +55,10 @@ $$\begin{aligned}      }  \end{aligned}$$ - -## From induced charge density - -A common way to calculate $$\varepsilon_r$$ is from +In practice, a common way to calculate $$\varepsilon_r$$ is from  the induced charge density $$\rho_\mathrm{ind}$$,  i.e. the offset caused by the material's particles responding to the field. -We start from [Gauss' law](/know/concept/maxwells-equations/) for $$\vb{P}$$: +Starting from [Gauss' law](/know/concept/maxwells-equations/) for $$\vb{P}$$:  $$\begin{aligned}      \nabla \cdot \vb{P} @@ -68,27 +66,27 @@ $$\begin{aligned}      = - \rho_\mathrm{ind}(\vb{r})  \end{aligned}$$ -This is Poisson's equation, which has the following well-known -[Fourier transform](/know/concept/fourier-transform/): +This is Poisson's equation, which has a well-known solution +via [Fourier transformation](/know/concept/fourier-transform/):  $$\begin{aligned}      \Phi_\mathrm{ind}(\vb{q})      = \frac{\rho_\mathrm{ind}(\vb{q})}{\varepsilon_0 |\vb{q}|^2} -    = V(\vb{q}) \: \rho_\mathrm{ind}(\vb{q}) +    \equiv V(\vb{q}) \: \rho_\mathrm{ind}(\vb{q})  \end{aligned}$$  Where $$V(\vb{q})$$ represents Coulomb interactions, -and $$V(0) = 0$$ to ensure overall neutrality: +and $$V(0) \equiv 0$$ to ensure overall neutrality:  $$\begin{aligned}      V(\vb{q}) -    = \frac{1}{\varepsilon_0 |\vb{q}|^2} +    \equiv \frac{1}{\varepsilon_0 |\vb{q}|^2}      \qquad \implies \qquad      V(\vb{r} - \vb{r}')      = \frac{1}{4 \pi \varepsilon_0 |\vb{r} - \vb{r}'|}  \end{aligned}$$ -The [convolution theorem](/know/concept/convolution-theorem/) +Note that the [convolution theorem](/know/concept/convolution-theorem/)  then gives us the solution $$\Phi_\mathrm{ind}$$ in the $$\vb{r}$$-domain:  $$\begin{aligned} @@ -97,37 +95,56 @@ $$\begin{aligned}      = \int_{-\infty}^\infty V(\vb{r} - \vb{r}') \: \rho_\mathrm{ind}(\vb{r}') \dd{\vb{r}'}  \end{aligned}$$ -To proceed, we need to find an expression for $$\rho_\mathrm{ind}$$ -that is proportional to $$\Phi_\mathrm{tot}$$ or $$\Phi_\mathrm{ext}$$, +To proceed to calculate $$\varepsilon_r$$ from $$\rho_\mathrm{ind}$$, +one needs an expression for $$\rho_\mathrm{ind}$$ +that is proportional to $$\Phi_\mathrm{tot}$$ or $$\Phi_\mathrm{ext}$$  or some linear combination thereof. -Such an expression must exist for a linear material. +Such an expression must exist for a linear medium, +but the details depend on the physics being considered +and are thus beyond our current scope; +we will just show the general form of $$\varepsilon_r$$ +once such an expression has been found. -Suppose we can show that $$\rho_\mathrm{ind} = C_\mathrm{ext} \Phi_\mathrm{ext}$$, -for some $$C_\mathrm{ext}$$, which may depend on $$\vb{q}$$. Then: +Suppose we know that $$\rho_\mathrm{ind} = c_\mathrm{ext} \Phi_\mathrm{ext}$$ +for some factor $$c_\mathrm{ext}$$, which may depend on $$\vb{q}$$. +Then, since $$\Phi_\mathrm{tot} = \Phi_\mathrm{ext} \!+\! \Phi_\mathrm{ind}$$, +we find in the $$\vb{q}$$-domain:  $$\begin{aligned}      \Phi_\mathrm{tot} -    = (1 + C_\mathrm{ext} V) \Phi_\mathrm{ext} +    = (1 + c_\mathrm{ext} V) \Phi_\mathrm{ext}      \quad \implies \quad      \boxed{          \varepsilon_r(\vb{q}) -        = \frac{1}{1 + C_\mathrm{ext}(\vb{q}) V(\vb{q})} +        = \frac{1}{1 + c_\mathrm{ext}(\vb{q}) V(\vb{q})}      }  \end{aligned}$$ -Similarly, suppose we can show that $$\rho_\mathrm{ind} = C_\mathrm{tot} \Phi_\mathrm{tot}$$, -for some quantity $$C_\mathrm{tot}$$, then: +Likewise, suppose we can instead show that +$$\rho_\mathrm{ind} = c_\mathrm{tot} \Phi_\mathrm{tot}$$ +for some quantity $$c_\mathrm{tot}$$, then:  $$\begin{aligned}      \Phi_\mathrm{ext} -    = (1 - C_\mathrm{tot} V) \Phi_\mathrm{tot} +    = (1 - c_\mathrm{tot} V) \Phi_\mathrm{tot}      \quad \implies \quad      \boxed{          \varepsilon_r(\vb{q}) -        = 1 - C_\mathrm{tot}(\vb{q}) V(\vb{q}) +        = 1 - c_\mathrm{tot}(\vb{q}) V(\vb{q})      }  \end{aligned}$$ +And in the unlikely event that an expression of the form +$$\rho_\mathrm{ind} = c_\mathrm{ext} \Phi_\mathrm{ext} \!+\! c_\mathrm{tot} \Phi_\mathrm{tot}$$ is found: + +$$\begin{aligned} +    (1 - c_\mathrm{tot} V) \Phi_\mathrm{tot} +    = (1 + c_\mathrm{ext} V) \Phi_\mathrm{ext} +    \quad \implies \quad +    \varepsilon_r(\vb{q}) +    = \frac{1 - c_\mathrm{tot}(\vb{q}) V(\vb{q})}{1 + c_\mathrm{ext}(\vb{q}) V(\vb{q})} +\end{aligned}$$ +  ## References diff --git a/source/know/concept/einstein-coefficients/index.md b/source/know/concept/einstein-coefficients/index.md index 179d866..ad75ce5 100644 --- a/source/know/concept/einstein-coefficients/index.md +++ b/source/know/concept/einstein-coefficients/index.md @@ -159,7 +159,8 @@ $$\begin{aligned}  This form of $$\hat{H}_1$$ is a well-known case for  [time-dependent perturbation theory](/know/concept/time-dependent-perturbation-theory/), -which tells us that the transition probability from $$\Ket{a}$$ to $$\Ket{b}$$ is: +which tells us that the transition probability +from $$\ket{a}$$ to $$\ket{b}$$ is (to first order):  $$\begin{aligned}      P_{ab} @@ -167,7 +168,7 @@ $$\begin{aligned}  \end{aligned}$$  If the nucleus is at $$z = 0$$, -then generally $$\Ket{1}$$ and $$\Ket{2}$$ will be even or odd functions of $$z$$, +then generally $$\ket{1}$$ and $$\ket{2}$$ will be even or odd functions of $$z$$,  meaning that $$\matrixel{1}{z}{1} = \matrixel{2}{z}{2} = 0$$  (see also [Laporte's selection rule](/know/concept/selection-rules/)),  leading to: diff --git a/source/know/concept/fermis-golden-rule/index.md b/source/know/concept/fermis-golden-rule/index.md index 021c8e4..ea58ee6 100644 --- a/source/know/concept/fermis-golden-rule/index.md +++ b/source/know/concept/fermis-golden-rule/index.md @@ -20,7 +20,7 @@ time.  From [time-dependent perturbation theory](/know/concept/time-dependent-perturbation-theory/),  we know that the transition probability  for a particle in state $$\Ket{a}$$ to go to $$\Ket{b}$$ -is as follows for a periodic perturbation at frequency $$\omega$$: +is as follows for a sinusoidal perturbation at frequency $$\omega$$:  $$\begin{aligned}      P_{ab} diff --git a/source/know/concept/ghz-paradox/index.md b/source/know/concept/ghz-paradox/index.md index a59ccfe..9951883 100644 --- a/source/know/concept/ghz-paradox/index.md +++ b/source/know/concept/ghz-paradox/index.md @@ -12,43 +12,46 @@ layout: "concept"  The **Greenberger-Horne-Zeilinger** or **GHZ paradox**  is an alternative proof of [Bell's theorem](/know/concept/bells-theorem/)  that does not use inequalities, -but the three-particle entangled **GHZ state** $$\Ket{\mathrm{GHZ}}$$ instead, +but the three-particle entangled **GHZ state** $$\ket{\mathrm{GHZ}}$$ instead,  $$\begin{aligned}      \boxed{ -        \Ket{\mathrm{GHZ}} -        = \frac{1}{\sqrt{2}} \Big( \Ket{000} + \Ket{111} \Big) +        \ket{\mathrm{GHZ}} +        = \frac{1}{\sqrt{2}} \Big( \ket{000} + \ket{111} \Big)      }  \end{aligned}$$ -Where $$\Ket{0}$$ and $$\Ket{1}$$ are qubit states, -for example, the eigenvalues of the Pauli matrix $$\hat{\sigma}_z$$. +Where $$\ket{0}$$ and $$\ket{1}$$ are qubit states, +specifically the eigenvalues of the Pauli matrix $$\hat{\sigma}_z$$.  If we now apply certain products of the Pauli matrices $$\hat{\sigma}_x$$ and $$\hat{\sigma}_y$$ -to the three particles, we find: +as [quantum gates](/know/concept/quantum-gate/) +to this three-particle state, we find:  $$\begin{aligned} -    \hat{\sigma}_x \otimes \hat{\sigma}_x \otimes \hat{\sigma}_x \Ket{\mathrm{GHZ}} -    &= \frac{1}{\sqrt{2}} \Big( \hat{\sigma}_x \Ket{0} \otimes \hat{\sigma}_x \Ket{0} \otimes \hat{\sigma}_x \Ket{0} -    + \hat{\sigma}_x \Ket{1} \otimes \hat{\sigma}_x \Ket{1} \otimes \hat{\sigma}_x \Ket{1} \Big) +    \hat{\sigma}_x \otimes \hat{\sigma}_x \otimes \hat{\sigma}_x \ket{\mathrm{GHZ}} +    &= \frac{1}{\sqrt{2}} \Big( \hat{\sigma}_x \ket{0} \otimes \hat{\sigma}_x \ket{0} \otimes \hat{\sigma}_x \ket{0} +    + \hat{\sigma}_x \ket{1} \otimes \hat{\sigma}_x \ket{1} \otimes \hat{\sigma}_x \ket{1} \Big)      \\ -    &= \frac{1}{\sqrt{2}} \Big( \Ket{1} \otimes \Ket{1} \otimes \Ket{1} + \Ket{0} \otimes \Ket{0} \otimes \Ket{0} \Big) -    = \Ket{\mathrm{GHZ}} +    &= \frac{1}{\sqrt{2}} \Big( \ket{1} \otimes \ket{1} \otimes \ket{1} + \ket{0} \otimes \ket{0} \otimes \ket{0} \Big)      \\ -    \hat{\sigma}_x \otimes \hat{\sigma}_y \otimes \hat{\sigma}_y \Ket{\mathrm{GHZ}} -    &= \frac{1}{\sqrt{2}} \Big( \hat{\sigma}_x \Ket{0} \otimes \hat{\sigma}_y \Ket{0} \otimes \hat{\sigma}_y \Ket{0} -    + \hat{\sigma}_x \Ket{1} \otimes \hat{\sigma}_y \Ket{1} \otimes \hat{\sigma}_y \Ket{1} \Big) +    &= \ket{\mathrm{GHZ}}      \\ -    &= \frac{1}{\sqrt{2}} \Big( \Ket{1} \otimes i \Ket{1} \otimes i \Ket{1} + \Ket{0} \otimes i \Ket{0} \otimes i \Ket{0} \Big) -    = - \Ket{\mathrm{GHZ}} +    \hat{\sigma}_x \otimes \hat{\sigma}_y \otimes \hat{\sigma}_y \ket{\mathrm{GHZ}} +    &= \frac{1}{\sqrt{2}} \Big( \hat{\sigma}_x \ket{0} \otimes \hat{\sigma}_y \ket{0} \otimes \hat{\sigma}_y \ket{0} +    + \hat{\sigma}_x \ket{1} \otimes \hat{\sigma}_y \ket{1} \otimes \hat{\sigma}_y \ket{1} \Big) +    \\ +    &= \frac{1}{\sqrt{2}} \Big( \ket{1} \otimes i \ket{1} \otimes i \ket{1} + \ket{0} \otimes i \ket{0} \otimes i \ket{0} \Big) +    \\ +    &= - \ket{\mathrm{GHZ}}  \end{aligned}$$  In other words, the GHZ state is a simultaneous eigenstate of these composite operators,  with eigenvalues $$+1$$ and $$-1$$, respectively. -Let us introduce two other product operators, -such that we have a set of four observables, -for which $$\Ket{\mathrm{GHZ}}$$ gives these eigenvalues: +Let us introduce two more operators in the same way, +so that we have a set of four observables, +for which $$\ket{\mathrm{GHZ}}$$ gives these eigenvalues:  $$\begin{aligned}      \hat{\sigma}_x \otimes \hat{\sigma}_x \otimes \hat{\sigma}_x diff --git a/source/know/concept/hellmann-feynman-theorem/index.md b/source/know/concept/hellmann-feynman-theorem/index.md index e18acc2..c6bf720 100644 --- a/source/know/concept/hellmann-feynman-theorem/index.md +++ b/source/know/concept/hellmann-feynman-theorem/index.md @@ -9,20 +9,20 @@ layout: "concept"  ---  Consider the time-independent Schrödinger equation, -where the Hamiltonian $$\hat{H}$$ depends on a general parameter $$\lambda$$, -whose meaning or type we will not specify: +where the Hamiltonian $$\hat{H}$$ depends on some parameter $$\lambda$$ +whose meaning we will not specify:  $$\begin{aligned} -    \hat{H}(\lambda) \Ket{\psi_n(\lambda)} -    = E_n(\lambda) \Ket{\psi_n(\lambda)} +    \hat{H}(\lambda) \ket{\psi_n(\lambda)} +    = E_n(\lambda) \ket{\psi_n(\lambda)}  \end{aligned}$$ -Assuming all eigenstates $$\Ket{\psi_n}$$ are normalized, +Assuming all eigenstates $$\ket{\psi_n}$$ are normalized,  this gives us the following basic relation:  $$\begin{aligned}      \matrixel{\psi_m}{\hat{H}}{\psi_n} -    = E_n \Inprod{\psi_m}{\psi_n} +    = E_n \inprod{\psi_m}{\psi_n}      = \delta_{mn} E_n  \end{aligned}$$ @@ -38,33 +38,32 @@ $$\begin{aligned}      + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n}      + \matrixel{\psi_m}{\hat{H}}{\nabla_\lambda \psi_n}      \\ -    &= E_m \Inprod{\psi_m}{\nabla_\lambda \psi_n} + E_n \Inprod{\nabla_\lambda \psi_m}{\psi_n} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} +    &= E_m \inprod{\psi_m}{\nabla_\lambda \psi_n} + E_n \inprod{\nabla_\lambda \psi_m}{\psi_n} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n}  \end{aligned}$$  In order to simplify this,  we differentiate the orthogonality relation -$$\Inprod{\psi_m}{\psi_n} = \delta_{mn}$$, -which ends up telling us that -$$\Inprod{\nabla_\lambda \psi_m}{\psi_n} = - \Inprod{\psi_m}{\nabla_\lambda \psi_n}$$: +$$\inprod{\psi_m}{\psi_n} = \delta_{mn}$$:  $$\begin{aligned}      0      = \nabla_\lambda \delta_{mn} -    = \nabla_\lambda \Inprod{\psi_m}{\psi_n} -    = \Inprod{\nabla_\lambda \psi_m}{\psi_n} + \Inprod{\psi_m}{\nabla_\lambda \psi_n} +    = \nabla_\lambda \inprod{\psi_m}{\psi_n} +    = \inprod{\nabla_\lambda \psi_m}{\psi_n} + \inprod{\psi_m}{\nabla_\lambda \psi_n}  \end{aligned}$$ -Using this result to replace $$\Inprod{\nabla_\lambda \psi_m}{\psi_n}$$ +Meaning that $$\inprod{\nabla_\lambda \psi_m}{\psi_n} = - \inprod{\psi_m}{\nabla_\lambda \psi_n}$$. +Using this result to replace $$\inprod{\nabla_\lambda \psi_m}{\psi_n}$$  in the previous equation leads to:  $$\begin{aligned}      \delta_{mn} \nabla_\lambda E_n -    &= (E_m - E_n) \Inprod{\psi_m}{\nabla_\lambda \psi_n} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} +    &= (E_m - E_n) \inprod{\psi_m}{\nabla_\lambda \psi_n} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n}  \end{aligned}$$  For $$m = n$$, we therefore arrive at the **Hellmann-Feynman theorem**,  which is useful when doing numerical calculations -to minimize energies with respect to $$\lambda$$: +that often involve minimizing energies with respect to $$\lambda$$:  $$\begin{aligned}      \boxed{ @@ -79,7 +78,7 @@ the [Berry phase](/know/concept/berry-phase/):  $$\begin{aligned}      \boxed{ -        (E_n - E_m) \Inprod{\psi_m}{\nabla_\lambda \psi_n} +        (E_n - E_m) \inprod{\psi_m}{\nabla_\lambda \psi_n}          = \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n}      }  \end{aligned}$$ diff --git a/source/know/concept/maxwell-bloch-equations/index.md b/source/know/concept/maxwell-bloch-equations/index.md index ba8a677..0252b5c 100644 --- a/source/know/concept/maxwell-bloch-equations/index.md +++ b/source/know/concept/maxwell-bloch-equations/index.md @@ -12,13 +12,13 @@ layout: "concept"  ---  For an electron in a two-level system with time-independent states -$$\Ket{g}$$ (ground) and $$\Ket{e}$$ (excited), +$$\ket{g}$$ (ground) and $$\ket{e}$$ (excited),  consider the following general solution -to the full Schrödinger equation: +to the time-dependent Schrödinger equation:  $$\begin{aligned} -    \Ket{\Psi} -    &= c_g \: \Ket{g} \exp(-i E_g t / \hbar) + c_e \: \Ket{e} \exp(-i E_e t / \hbar) +    \ket{\Psi} +    &= c_g \ket{g} \exp(-i E_g t / \hbar) + c_e \ket{e} \exp(-i E_e t / \hbar)  \end{aligned}$$  Perturbing this system with @@ -87,15 +87,16 @@ $$\begin{aligned}  \end{aligned}$$ +  ## Optical Bloch equations -For $$\Ket{\Psi}$$ as defined above, +For $$\ket{\Psi}$$ as defined above,  the corresponding pure [density operator](/know/concept/density-operator/)  $$\hat{\rho}$$ is as follows:  $$\begin{aligned}      \hat{\rho} -    = \Ket{\Psi} \Bra{\Psi} +    = \ket{\Psi} \bra{\Psi}      =      \begin{bmatrix}          c_e c_e^* & c_e c_g^* \exp(-i \omega_0 t) \\ @@ -159,11 +160,10 @@ $$\begin{aligned}  These equations are correct if nothing else is affecting $$\hat{\rho}$$.  But in practice, these quantities decay due to various processes, -e.g. spontaneous emission (see [Einstein coefficients](/know/concept/einstein-coefficients/)). +e.g. [spontaneous emission](/know/concept/einstein-coefficients/). -Let $$\rho_{ee}$$ decays with rate $$\gamma_e$$. -Since the total probability $$\rho_{ee} + \rho_{gg} = 1$$, -we thus have: +Suppose $$\rho_{ee}$$ decays with rate $$\gamma_e$$. +Because the total probability $$\rho_{ee} + \rho_{gg} = 1$$, we have:  $$\begin{aligned}      \Big( \dv{\rho_{ee}}{t} \Big)_{e} @@ -220,10 +220,11 @@ $$\begin{aligned}      }  \end{aligned}$$ -Many authors simplify these equations a bit by choosing +Some authors simplify these equations a bit by choosing  $$\gamma_g = 0$$ and $$\gamma_\perp = \gamma_e / 2$$. +  ## Including Maxwell's equations  This two-level system has a dipole moment $$\vb{p}$$ as follows, @@ -286,7 +287,7 @@ $$\begin{aligned}  We can rewrite the first two terms in the following intuitive form,  which describes a decay with  rate $$\gamma_\parallel \equiv \gamma_g + \gamma_e$$ -towards an equilbrium $$d_0$$: +towards an equilibrium $$d_0$$:  $$\begin{aligned}      2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee} diff --git a/source/know/concept/no-cloning-theorem/index.md b/source/know/concept/no-cloning-theorem/index.md index a91ae6f..840a598 100644 --- a/source/know/concept/no-cloning-theorem/index.md +++ b/source/know/concept/no-cloning-theorem/index.md @@ -62,6 +62,7 @@ This is clearly not the same as before: we have a contradiction,  which implies that such a general cloning machine cannot ever exist. +  ## References  1.  N. Brunner,      *Quantum information theory: lecture notes*, diff --git a/source/know/concept/quantum-gate/index.md b/source/know/concept/quantum-gate/index.md index 9704e53..dd198f2 100644 --- a/source/know/concept/quantum-gate/index.md +++ b/source/know/concept/quantum-gate/index.md @@ -17,15 +17,15 @@ so we only consider the most important examples here.  ## One-qubit gates -As an example, consider the following must general single-qubit state $$\Ket{\psi}$$: +As an example, consider the following most general single-qubit state $$\ket{\psi}$$:  $$\begin{aligned} -    \Ket{\psi} -    = \alpha \Ket{0} + \beta \Ket{1} +    \ket{\psi} +    = \alpha \ket{0} + \beta \ket{1}      = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}  \end{aligned}$$ -Arguably the most famous and/or most fundamental quantum gates are the **Pauli matrices**: +Arguably the most famous and most fundamental quantum gates are the **Pauli matrices**:  $$\begin{aligned}      \boxed{ @@ -53,19 +53,19 @@ $$\begin{aligned}      }  \end{aligned}$$ -They have the following effect on $$\Ket{\psi}$$. +They have the following effect on $$\ket{\psi}$$.  Note that $$X$$ is equivalent to the classical $$\mathrm{NOT}$$ gate  (and is often given that name),  and $$Z$$ is sometimes called the **phase-flip gate**:  $$\begin{aligned} -    X \Ket{\psi} +    X \ket{\psi}      = \begin{bmatrix} \beta \\ \alpha \end{bmatrix}      \qquad -    Y \Ket{\psi} +    Y \ket{\psi}      = \begin{bmatrix} -i \beta \\ i \alpha \end{bmatrix}      \qquad -    Z \Ket{\psi} +    Z \ket{\psi}      = \begin{bmatrix} \alpha \\ -\beta \end{bmatrix}  \end{aligned}$$ @@ -87,7 +87,7 @@ For $$\phi = \pi$$, we recover the Pauli-$$Z$$ gate.  In general, the action of $$R_\phi$$ is as follows:  $$\begin{aligned} -    R_\phi \Ket{\psi} +    R_\phi \ket{\psi}      = \begin{bmatrix} \alpha \\ e^{i \phi} \beta \end{bmatrix}  \end{aligned}$$ @@ -128,10 +128,11 @@ $$\begin{aligned}  \end{aligned}$$  Its action consists of rotating the qubit -by $$\pi$$ around the axis $$(X + Z) / \sqrt{2}$$ of the Bloch sphere: +by $$\pi$$ around the axis $$(X + Z) / \sqrt{2}$$ of +the [Bloch sphere](/know/concept/bloch-sphere/):  $$\begin{aligned} -    H \Ket{\psi} +    H \ket{\psi}      = \frac{1}{\sqrt{2}} \begin{bmatrix} \alpha + \beta \\ \alpha - \beta \end{bmatrix}  \end{aligned}$$ @@ -139,20 +140,20 @@ Notably, it maps the eigenstates of $$X$$ and $$Z$$ to each other,  and is its own inverse (i.e. unitary):  $$\begin{aligned} -    H \Ket{0} = \Ket{+} +    H \ket{0} = \ket{+}      \qquad -    H \Ket{1} = \Ket{-} +    H \ket{1} = \ket{-}      \qquad -    H \Ket{+} = \Ket{0} +    H \ket{+} = \ket{0}      \qquad -    H \Ket{-} = \Ket{1} +    H \ket{-} = \ket{1}  \end{aligned}$$  The **Clifford gates** are a set including $$X$$, $$Y$$, $$Z$$, $$H$$ and $$S$$,  or more generally any gates that rotate  by multiples of $$\pi/2$$ around the Bloch sphere. -This set is **not universal**, meaning that if we start from $$\Ket{0}$$, -we can only reach $$\Ket{0}$$, $$\Ket{1}$$, $$\Ket{+}$$, $$\Ket{-}$$, $$\Ket{+i}$$ $$\Ket{-i}$$ using these gates. +This set is **not universal**, meaning that if we start from $$\ket{0}$$, +we can only reach $$\ket{0}$$, $$\ket{1}$$, $$\ket{+}$$, $$\ket{-}$$, $$\ket{+i}$$ $$\ket{-i}$$ using these gates.  If we add *any* non-Clifford gate, for example $$T$$,  then we can reach any point on the Bloch sphere, @@ -170,15 +171,15 @@ any state can be approximated.  ## Two-qubit gates  As an example, let us consider -the following two pure one-qubit states $$\Ket{\psi_1}$$ and $$\Ket{\psi_2}$$: +the following two pure one-qubit states $$\ket{\psi_1}$$ and $$\ket{\psi_2}$$:  $$\begin{aligned} -    \Ket{\psi_1} -    = \alpha_1 \Ket{0} + \beta_1 \Ket{1} +    \ket{\psi_1} +    = \alpha_1 \ket{0} + \beta_1 \ket{1}      = \begin{bmatrix} \alpha_1 \\ \beta_1 \end{bmatrix}      \qquad \quad -    \Ket{\psi_2} -    = \alpha_2 \Ket{0} + \beta_2 \Ket{1} +    \ket{\psi_2} +    = \alpha_2 \ket{0} + \beta_2 \ket{1}      = \begin{bmatrix} \alpha_2 \\ \beta_2 \end{bmatrix}  \end{aligned}$$ @@ -186,23 +187,22 @@ The composite state of both qubits, assuming they are pure,  is then their tensor product $$\otimes$$:  $$\begin{aligned} -    \Ket{\psi_1 \psi_2} -    = \Ket{\psi_1} \otimes \Ket{\psi_2} -    &= \alpha_1 \alpha_2 \Ket{00} + \alpha_1 \beta_2 \Ket{01} + \beta_1 \alpha_2 \Ket{10} + \beta_1 \beta_2 \Ket{11} +    \ket{\psi_1 \psi_2} +    = \ket{\psi_1} \otimes \ket{\psi_2} +    &= \alpha_1 \alpha_2 \ket{00} + \alpha_1 \beta_2 \ket{01} + \beta_1 \alpha_2 \ket{10} + \beta_1 \beta_2 \ket{11}      \\ -    &= c_{00} \Ket{00} + c_{01} \Ket{01} + c_{10} \Ket{10} + c_{11} \Ket{11} +    &= c_{00} \ket{00} + c_{01} \ket{01} + c_{10} \ket{10} + c_{11} \ket{11}  \end{aligned}$$  Note that a two-qubit system may be [entangled](/know/concept/quantum-entanglement/),  in which case the coefficients $$c_{00}$$ etc. cannot be written as products, -i.e. $$\Ket{\psi_2}$$ cannot be expressed separately from $$\Ket{\psi_1}$$, and vice versa. +i.e. $$\ket{\psi_2}$$ cannot be expressed separately from $$\ket{\psi_1}$$, and vice versa. +In other words, the action of a two-qubit gate +can be expressed in the basis of $$\ket{00}$$, $$\ket{01}$$, $$\ket{10}$$ and $$\ket{11}$$, +but not always in the basis of $$\ket{0}_1$$, $$\ket{1}_1$$, $$\ket{0}_2$$ and $$\ket{1}_2$$. -In other words, the general action of a two-qubit quantum gate -can be expressed in the basis of $$\Ket{00}$$, $$\Ket{01}$$, $$\Ket{10}$$ and $$\Ket{11}$$, -but not always in the basis of $$\Ket{0}_1$$, $$\Ket{1}_1$$, $$\Ket{0}_2$$ and $$\Ket{1}_2$$. - -With that said, the first two-qubit gate is $$\mathrm{SWAP}$$, -which simply swaps $$\Ket{\psi_1}$$ and $$\Ket{\psi_2}$$: +With this noted, the first two-qubit gate is $$\mathrm{SWAP}$$, +which simply swaps $$\ket{\psi_1}$$ and $$\ket{\psi_2}$$:  {% include image.html file="swap.png" width="22%"      alt="SWAP gate diagram" %} @@ -219,18 +219,18 @@ $$\begin{aligned}      }  \end{aligned}$$ -This matrix is given in the basis of $$\Ket{00}$$, $$\Ket{01}$$, $$\Ket{10}$$ and $$\Ket{11}$$. +This matrix is given in the basis of $$\ket{00}$$, $$\ket{01}$$, $$\ket{10}$$ and $$\ket{11}$$.  Note that $$\mathrm{SWAP}$$ cannot generate entanglement,  so if its input is separable, its output is too.  In any case, its effect is clear:  $$\begin{aligned} -    \mathrm{SWAP} \Ket{\psi_1 \psi_2} -    &= c_{00} \Ket{00} + c_{10} \Ket{01} + c_{01} \Ket{10} + c_{11} \Ket{11} +    \mathrm{SWAP} \ket{\psi_1 \psi_2} +    &= c_{00} \ket{00} + c_{10} \ket{01} + c_{01} \ket{10} + c_{11} \ket{11}  \end{aligned}$$  Next, there is the **controlled NOT gate** $$\mathrm{CNOT}$$, -which "flips" (applies $$X$$ to) $$\Ket{\psi_2}$$  | 
