summaryrefslogtreecommitdiff
path: root/source/know/concept/bell-state
diff options
context:
space:
mode:
authorPrefetch2022-10-14 23:25:28 +0200
committerPrefetch2022-10-14 23:25:28 +0200
commit6ce0bb9a8f9fd7d169cbb414a9537d68c5290aae (patch)
treea0abb6b22f77c0e84ed38277d14662412ce14f39 /source/know/concept/bell-state
Initial commit after migration from Hugo
Diffstat (limited to 'source/know/concept/bell-state')
-rw-r--r--source/know/concept/bell-state/index.md93
1 files changed, 93 insertions, 0 deletions
diff --git a/source/know/concept/bell-state/index.md b/source/know/concept/bell-state/index.md
new file mode 100644
index 0000000..15b916d
--- /dev/null
+++ b/source/know/concept/bell-state/index.md
@@ -0,0 +1,93 @@
+---
+title: "Bell state"
+date: 2021-03-09
+categories:
+- Quantum mechanics
+- Quantum information
+layout: "concept"
+---
+
+In quantum information, the **Bell states** are a set of four two-qubit states
+which are simple and useful examples of [quantum entanglement](/know/concept/quantum-entanglement/).
+They are given by:
+
+$$\begin{aligned}
+ \boxed{
+ \begin{aligned}
+ \ket{\Phi^{\pm}}
+ &= \frac{1}{\sqrt{2}} \Big( \Ket{0}_A \Ket{0}_B \pm \Ket{1}_A \Ket{1}_B \Big)
+ \\
+ \ket{\Psi^{\pm}}
+ &= \frac{1}{\sqrt{2}} \Big( \Ket{0}_A \Ket{1}_B \pm \Ket{1}_A \Ket{0}_B \Big)
+ \end{aligned}
+ }
+\end{aligned}$$
+
+Where e.g. $\Ket{0}_A \Ket{1}_B = \Ket{0}_A \otimes \Ket{1}_B$
+is the tensor product of qubit $A$ in state $\Ket{0}$ and $B$ in $\Ket{1}$.
+These states form an orthonormal basis for the two-qubit
+[Hilbert space](/know/concept/hilbert-space/).
+
+More importantly, however,
+is that the Bell states are maximally entangled,
+which we prove here for $\ket{\Phi^{+}}$.
+Consider the following pure [density operator](/know/concept/density-operator/):
+
+$$\begin{aligned}
+ \hat{\rho}
+ = \ket{\Phi^{+}} \bra{\Phi^{+}}
+ &= \frac{1}{2} \Big( \Ket{0}_A \Ket{0}_B + \Ket{1}_A \Ket{1}_B \Big) \Big( \Bra{0}_A \Bra{0}_B + \Bra{1}_A \Bra{1}_B \Big)
+\end{aligned}$$
+
+The reduced density operator $\hat{\rho}_A$ of qubit $A$ is then calculated as follows:
+
+$$\begin{aligned}
+ \hat{\rho}_A
+ &= \Tr_B(\hat{\rho})
+ = \sum_{b = 0, 1} \Bra{b}_B \Big( \ket{\Phi^{+}} \bra{\Phi^{+}} \Big) \Ket{b}_B
+ \\
+ &= \sum_{b = 0, 1} \Big( \Ket{0}_A \Inprod{b}{0}_B + \Ket{1}_A \Inprod{b}{1}_B \Big)
+ \Big( \Bra{0}_A \Inprod{0}{b}_B + \Bra{1}_A \Inprod{1}{b}_B \Big)
+ \\
+ &= \frac{1}{2} \Big( \Ket{0}_A \Bra{0}_A + \Ket{1}_A \Bra{1}_A \Big)
+ = \frac{1}{2} \hat{I}
+\end{aligned}$$
+
+This result is maximally mixed, therefore $\ket{\Phi^{+}}$ is maximally entangled.
+The same holds for the other three Bell states,
+and is equally true for qubit $B$.
+
+This means that a measurement of qubit $A$
+has a 50-50 chance to yield $\Ket{0}$ or $\Ket{1}$.
+However, due to the entanglement,
+measuring $A$ also has consequences for qubit $B$:
+
+$$\begin{aligned}
+ \big| \Bra{0}_A \! \Bra{0}_B \cdot \ket{\Phi^{+}} \big|^2
+ &= \frac{1}{2} \Big( \Inprod{0}{0}_A \Inprod{0}{0}_B + \Inprod{0}{1}_A \Inprod{0}{1}_B \Big)^2
+ = \frac{1}{2}
+ \\
+ \big| \Bra{0}_A \! \Bra{1}_B \cdot \ket{\Phi^{+}} \big|^2
+ &= \frac{1}{2} \Big( \Inprod{0}{0}_A \Inprod{1}{0}_B + \Inprod{0}{1}_A \Inprod{1}{1}_B \Big)^2
+ = 0
+ \\
+ \big| \Bra{1}_A \! \Bra{0}_B \cdot \ket{\Phi^{+}} \big|^2
+ &= \frac{1}{2} \Big( \Inprod{1}{0}_A \Inprod{0}{0}_B + \Inprod{1}{1}_A \Inprod{0}{1}_B \Big)^2
+ = 0
+ \\
+ \big| \Bra{1}_A \! \Bra{1}_B \cdot \ket{\Phi^{+}} \big|^2
+ &= \frac{1}{2} \Big( \Inprod{1}{0}_A \Inprod{1}{0}_B + \Inprod{1}{1}_A \Inprod{1}{1}_B \Big)^2
+ = \frac{1}{2}
+\end{aligned}$$
+
+As an example, if $A$ collapses into $\Ket{0}$ due to a measurement,
+then $B$ instantly also collapses into $\Ket{0}$, never $\Ket{1}$,
+even if it was not measured.
+This was a specific example for $\ket{\Phi^{+}}$,
+but analogous results can be found for the other Bell states.
+
+
+## References
+1. J.B. Brask,
+ *Quantum information: lecture notes*,
+ 2021, unpublished.