summaryrefslogtreecommitdiff
path: root/source/know/concept/cylindrical-parabolic-coordinates
diff options
context:
space:
mode:
authorPrefetch2023-06-14 20:25:38 +0200
committerPrefetch2023-06-14 20:25:38 +0200
commit5a4eb1d13110048b3714754817b3f38d7a55970b (patch)
tree975911ae346719359ca5279655221fa7d0c93154 /source/know/concept/cylindrical-parabolic-coordinates
parent7ec42764de400df4db629780f3c758f553ac5a93 (diff)
Improve knowledge base
Diffstat (limited to 'source/know/concept/cylindrical-parabolic-coordinates')
-rw-r--r--source/know/concept/cylindrical-parabolic-coordinates/index.md279
1 files changed, 196 insertions, 83 deletions
diff --git a/source/know/concept/cylindrical-parabolic-coordinates/index.md b/source/know/concept/cylindrical-parabolic-coordinates/index.md
index 766c9b6..58358dd 100644
--- a/source/know/concept/cylindrical-parabolic-coordinates/index.md
+++ b/source/know/concept/cylindrical-parabolic-coordinates/index.md
@@ -8,82 +8,97 @@ categories:
layout: "concept"
---
-**Cylindrical parabolic coordinates** are a coordinate system
-that describes a point in space using three coordinates $$(\sigma, \tau, z)$$.
-The $$z$$-axis is unchanged from the Cartesian system,
-hence it is called a *cylindrical* system.
-In the $$z$$-isoplane, however, confocal parabolas are used.
-These coordinates can be converted to the Cartesian $$(x, y, z)$$ as follows:
+**Cylindrical parabolic coordinates** extend parabolic coordinates $$(\sigma, \tau)$$ to 3D,
+by describing a point in space using the variables $$(\sigma, \tau, z)$$.
+The $$z$$-axis is the same as in the Cartesian system, (hence the name *cylindrical*),
+while the coordinate lines of $$\sigma$$ and $$\tau$$ are confocal parabolas.
+
+[Cartesian coordinates](/know/concept/cartesian-coordinates/) $$(x, y, z)$$
+and this system $$(\sigma, \tau, z)$$ are related by:
$$\begin{aligned}
\boxed{
- x = \frac{1}{2} (\tau^2 - \sigma^2 )
- \qquad
- y = \sigma \tau
- \qquad
- z = z
+ \begin{aligned}
+ x
+ &= \frac{1}{2} (\tau^2 - \sigma^2)
+ \\
+ y
+ &= \sigma \tau
+ \\
+ z
+ &= z
+ \end{aligned}
}
\end{aligned}$$
-Converting the other way is a bit trickier.
-It can be done by solving the following equations,
-and potentially involves some fiddling with signs:
+Conversely, a point given in $$(x, y, z)$$ can be converted
+to $$(\sigma, \tau, z)$$ using these formulae:
$$\begin{aligned}
- 2 x
- = \frac{y^2}{\sigma^2} - \sigma^2
- \qquad \qquad
- 2 x
- = - \frac{y^2}{\tau^2} + \tau^2
+ \boxed{
+ \begin{aligned}
+ \sigma
+ &= \sgn(x) \sqrt{\sqrt{x^2 + y^2} - x}
+ \\
+ \tau
+ &= \sqrt{\sqrt{x^2 + y^2} + x}
+ \\
+ z
+ &= z
+ \end{aligned}
+ }
\end{aligned}$$
Cylindrical parabolic coordinates form
an [orthogonal curvilinear system](/know/concept/orthogonal-curvilinear-coordinates/),
-so we would like to find its scale factors $$h_\sigma$$, $$h_\tau$$ and $$h_z$$.
-The differentials of the Cartesian coordinates are as follows:
+whose **scale factors** $$h_\sigma$$, $$h_\tau$$ and $$h_z$$ we need.
+To get those, we calculate the unnormalized local basis:
$$\begin{aligned}
- \dd{x} = - \sigma \dd{\sigma} + \tau \dd{\tau}
- \qquad
- \dd{y} = \tau \dd{\sigma} + \sigma \dd{\tau}
- \qquad
- \dd{z} = \dd{z}
+ h_\sigma \vu{e}_\sigma
+ &= \vu{e}_x \pdv{x}{\sigma} + \vu{e}_y \pdv{y}{\sigma} + \vu{e}_z \pdv{z}{\sigma}
+ \\
+ &= - \vu{e}_x \sigma + \vu{e}_y \tau
+ \\
+ h_\tau \vu{e}_\tau
+ &= \vu{e}_x \pdv{x}{\tau} + \vu{e}_y \pdv{y}{\tau} + \vu{e}_z \pdv{z}{\tau}
+ \\
+ &= \vu{e}_x \tau + \vu{e}_y \sigma
+ \\
+ h_\sigma \vu{e}_\sigma
+ &= \vu{e}_x \pdv{x}{z} + \vu{e}_y \pdv{y}{z} + \vu{e}_z \pdv{z}{z}
+ \\
+ &= \vu{e}_z
\end{aligned}$$
-We calculate the line segment $$\dd{\ell}^2$$,
-skipping many terms thanks to orthogonality:
-
-$$\begin{aligned}
- \dd{\ell}^2
- &= (\sigma^2 + \tau^2) \:\dd{\sigma}^2 + (\tau^2 + \sigma^2) \:\dd{\tau}^2 + \dd{z}^2
-\end{aligned}$$
-
-From this, we can directly read off the scale factors $$h_\sigma^2$$, $$h_\tau^2$$ and $$h_z^2$$,
-which turn out to be:
+By normalizing the **local basis vectors**
+$$\vu{e}_\sigma$$, $$\vu{e}_\tau$$ and $$\vu{e}_z$$,
+we arrive at these expressions,
+where we have defined the abbreviation $$\rho$$ for convenience:
$$\begin{aligned}
\boxed{
- h_\sigma = \sqrt{\sigma^2 + \tau^2}
- \qquad
- h_\tau = \sqrt{\sigma^2 + \tau^2}
- \qquad
- h_z = 1
+ \begin{aligned}
+ h_\sigma
+ &= \rho
+ \equiv \sqrt{\sigma^2 + \tau^2}
+ \\
+ h_\tau
+ &= \rho
+ \equiv \sqrt{\sigma^2 + \tau^2}
+ \\
+ h_z
+ &= 1
+ \end{aligned}
}
-\end{aligned}$$
-
-With these scale factors, we can use
-the general formulae for orthogonal curvilinear coordinates
-to easily to convert things from the Cartesian system.
-The basis vectors are:
-
-$$\begin{aligned}
+ \qquad\qquad
\boxed{
\begin{aligned}
\vu{e}_\sigma
- &= \frac{- \sigma}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_x + \frac{\tau}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_y
+ &= - \vu{e}_x \frac{\sigma}{\rho} + \vu{e}_y \frac{\tau}{\rho}
\\
\vu{e}_\tau
- &= \frac{\tau}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_x + \frac{\sigma}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_y
+ &= \vu{e}_x \frac{\tau}{\rho} + \vu{e}_y \frac{\sigma}{\rho}
\\
\vu{e}_z
&= \vu{e}_z
@@ -91,13 +106,54 @@ $$\begin{aligned}
}
\end{aligned}$$
-The basic vector operations (gradient, divergence, Laplacian and curl) are given by:
+Thanks to these scale factors, we can easily convert calculus from the Cartesian system
+using the standard formulae for orthogonal curvilinear coordinates.
+
+
+
+## Differential elements
+
+For line integrals,
+the tangent vector element $$\dd{\vb{\ell}}$$ for a curve is as follows:
+
+$$\begin{aligned}
+ \boxed{
+ \dd{\vb{\ell}}
+ = \vu{e}_\sigma \: \rho \dd{\sigma} + \: \vu{e}_\tau \: \rho \dd{\tau} + \: \vu{e}_z \dd{z}
+ }
+\end{aligned}$$
+
+For surface integrals,
+the normal vector element $$\dd{\vb{S}}$$ for a surface is given by:
+
+$$\begin{aligned}
+ \boxed{
+ \dd{\vb{S}}
+ = \vu{e}_\sigma \: \rho \dd{\tau} \dd{z} + \: \vu{e}_\tau \: \rho \dd{\sigma} \dd{z} + \: \vu{e}_z \: \rho^2 \dd{\sigma} \dd{\tau}
+ }
+\end{aligned}$$
+
+And for volume integrals,
+the infinitesimal volume $$\dd{V}$$ takes the following form:
+
+$$\begin{aligned}
+ \boxed{
+ \dd{V}
+ = \rho^2 \dd{\sigma} \dd{\tau} \dd{z}
+ }
+\end{aligned}$$
+
+
+
+## Common operations
+
+The basic vector operations (gradient, divergence, curl and Laplacian) are given by:
$$\begin{aligned}
\boxed{
\nabla f
- = \frac{\vu{e}_\sigma}{\sqrt{\sigma^2 + \tau^2}} \pdv{f}{\sigma}
- + \frac{\vu{e}_\tau}{\sqrt{\sigma^2 + \tau^2}} \pdv{f}{\tau}
+ = \vu{e}_\sigma \frac{1}{\rho} \pdv{f}{\sigma}
+ + \vu{e}_\tau \frac{1}{\rho} \pdv{f}{\tau}
+ \vu{e}_z \pdv{f}{z}
}
\end{aligned}$$
@@ -105,78 +161,135 @@ $$\begin{aligned}
$$\begin{aligned}
\boxed{
\nabla \cdot \vb{V}
- = \frac{1}{\sigma^2 + \tau^2}
- \Big( \pdv{(V_\sigma \sqrt{\sigma^2 + \tau^2})}{\sigma} + \pdv{(V_\tau \sqrt{\sigma^2 + \tau^2})}{\tau} \Big) + \pdv{V_z}{z}
+ = \frac{1}{\rho} \pdv{V_\sigma}{\sigma} + \frac{\sigma V_\sigma}{\rho^3}
+ + \frac{1}{\rho} \pdv{V_\tau}{\tau} + \frac{\tau V_\tau}{\rho^3}
+ + \pdv{V_z}{z}
+ }
+\end{aligned}$$
+
+$$\begin{aligned}
+ \boxed{
+ \begin{aligned}
+ \nabla \times \vb{V}
+ &= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_z}{\tau} - \pdv{V_\tau}{z} \bigg)
+ \\
+ &\quad\: + \vu{e}_\tau \bigg( \pdv{V_\sigma}{z} - \frac{1}{\rho} \pdv{V_z}{\sigma} \bigg)
+ \\
+ &\quad\: + \vu{e}_z \bigg( \frac{1}{\rho} \pdv{V_\tau}{\sigma} + \frac{\sigma V_\tau}{\rho^3}
+ - \frac{1}{\rho} \pdv{V_\sigma}{\tau} - \frac{\tau V_\sigma}{\rho^3} \bigg)
+ \end{aligned}
}
\end{aligned}$$
$$\begin{aligned}
\boxed{
\nabla^2 f
- = \frac{1}{\sigma^2 + \tau^2} \Big( \pdvn{2}{f}{\sigma} + \pdvn{2}{f}{\tau} \Big) + \pdvn{2}{f}{z}
+ = \frac{1}{\rho^2} \pdvn{2}{f}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{f}{\tau} + \pdvn{2}{f}{z}
}
\end{aligned}$$
+
+
+## Uncommon operations
+
+Uncommon operations include:
+the gradient of a divergence $$\nabla (\nabla \cdot \vb{V})$$,
+the gradient of a vector $$\nabla \vb{V}$$,
+the advection of a vector $$(\vb{U} \cdot \nabla) \vb{V}$$ with respect to $$\vb{U}$$,
+the Laplacian of a vector $$\nabla^2 \vb{V}$$,
+and the divergence of a 2nd-order tensor $$\nabla \cdot \overline{\overline{\vb{T}}}$$:
+
$$\begin{aligned}
\boxed{
\begin{aligned}
- \nabla \times \vb{V}
- &= \vu{e}_\sigma \Big( \frac{\vu{e}_1}{\sqrt{\sigma^2 + \tau^2}} \pdv{V_z}{\tau} - \pdv{V_\tau}{z} \Big)
+ \nabla (\nabla \cdot \vb{V})
+ &= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\sigma} + \frac{1}{\rho^2} \mpdv{V_\tau}{\sigma}{\tau}
+ + \frac{1}{\rho} \mpdv{V_z}{\sigma}{z}
+ \\
+ &\qquad\qquad + \frac{\tau}{\rho^4} \pdv{V_\tau}{\sigma} - \frac{\sigma}{\rho^4} \pdv{V_\tau}{\tau}
+ + \frac{\rho^2 - 3 \sigma^2}{\rho^6} V_\sigma - \frac{3 \sigma \tau V_\tau}{\rho^6} \bigg)
\\
- &+ \vu{e}_\tau \Big( \pdv{V_\sigma}{z} - \frac{1}{\sqrt{\sigma^2 + \tau^2}} \pdv{V_z}{\sigma} \Big)
+ &\quad\: + \vu{e}_\tau \bigg( \frac{1}{\rho^2} \mpdv{V_\sigma}{\tau}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\tau}
+ + \frac{1}{\rho} \mpdv{V_z}{\tau}{z}
\\
- &+ \frac{\vu{e}_z}{\sigma^2 + \tau^2}
- \Big( \pdv{(V_\tau \sqrt{\sigma^2 + \tau^2})}{\sigma} - \pdv{(V_\sigma \sqrt{\sigma^2 + \tau^2})}{\tau} \Big)
+ &\qquad\qquad - \frac{\tau}{\rho^4} \pdv{V_\sigma}{\sigma} + \frac{\sigma}{\rho^4} \pdv{V_\sigma}{\tau}
+ - \frac{3 \sigma \tau V_\sigma}{\rho^6} + \frac{\rho^2 - 3 \tau^2}{\rho^6} V_\tau \bigg)
+ \\
+ &\quad\: + \vu{e}_z \bigg( \frac{1}{\rho} \mpdv{V_\sigma}{z}{\sigma} + \frac{1}{\rho} \mpdv{V_\tau}{z}{\tau} + \pdvn{2}{V_z}{z}
+ + \frac{\sigma}{\rho^3} \pdv{V_\sigma}{z} + \frac{\tau}{\rho^3} \pdv{V_\tau}{z} \bigg)
\end{aligned}
}
\end{aligned}$$
-The differential element of volume $$\dd{V}$$
-in cylindrical parabolic coordinates is given by:
-
$$\begin{aligned}
\boxed{
- \dd{V} = (\sigma^2 + \tau^2) \dd{\sigma} \dd{\tau} \dd{z}
+ \begin{aligned}
+ \nabla \vb{V}
+ &= \quad \vu{e}_\sigma \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_\sigma}{\sigma} + \frac{\tau V_\tau}{\rho^3} \bigg)
+ + \vu{e}_\sigma \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{V_\tau}{\sigma} - \frac{\tau V_\sigma}{\rho^3} \bigg)
+ + \vu{e}_\sigma \vu{e}_z \frac{1}{\rho} \pdv{V_z}{\sigma}
+ \\
+ &\quad\: + \vu{e}_\tau \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_\sigma}{\tau} - \frac{\sigma V_\tau}{\rho^3} \bigg)
+ + \vu{e}_\tau \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{V_\tau}{\tau} + \frac{\sigma V_\sigma}{\rho^3} \bigg)
+ + \vu{e}_\tau \vu{e}_z \frac{1}{\rho} \pdv{V_z}{\tau}
+ \\
+ &\quad\: + \vu{e}_z \vu{e}_\sigma \pdv{V_\sigma}{z}
+ + \vu{e}_z \vu{e}_\tau \pdv{V_\tau}{z}
+ + \vu{e}_z \vu{e}_z \pdv{V_z}{z}
+ \end{aligned}
}
\end{aligned}$$
-The differential elements of the isosurfaces are as follows,
-where $$\dd{S_\sigma}$$ is the $$\sigma$$-isosurface, etc.:
-
$$\begin{aligned}
\boxed{
\begin{aligned}
- \dd{S_\sigma} &= \sqrt{\sigma^2 + \tau^2} \dd{\tau} \dd{z}
+ (\vb{U} \cdot \nabla) \vb{V}
+ &= \quad \vu{e}_\sigma \bigg( \frac{U_\sigma}{\rho} \pdv{V_\sigma}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_\sigma}{\tau} + U_z \pdv{V_\sigma}{z}
+ + \frac{\tau}{\rho^3} U_\sigma V_\tau - \frac{\sigma}{\rho^3} U_\tau V_\tau \bigg)
\\
- \dd{S_\tau} &= \sqrt{\sigma^2 + \tau^2} \dd{\sigma} \dd{z}
+ &\quad\: + \vu{e}_\tau \bigg( \frac{U_\sigma}{\rho} \pdv{V_\tau}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_\tau}{\tau} + U_z \pdv{V_\tau}{z}
+ + \frac{\sigma}{\rho^3} U_\tau V_\sigma - \frac{\tau}{\rho^3} U_\sigma V_\sigma \bigg)
\\
- \dd{S_z} &= (\sigma^2 + \tau^2) \dd{\sigma} \dd{\tau}
+ &\quad\: + \vu{e}_z \bigg( \frac{U_\sigma}{\rho} \pdv{V_z}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_z}{\tau} + U_z \pdv{V_z}{z} \bigg)
\end{aligned}
}
\end{aligned}$$
-The normal element $$\dd{\vu{S}}$$ of a surface and
-the tangent element $$\dd{\vu{\ell}}$$ of a curve are respectively:
-
$$\begin{aligned}
\boxed{
- \dd{\vu{S}}
- = \vu{e}_\sigma \sqrt{\sigma^2 + \tau^2} \dd{\tau} \dd{z}
- + \vu{e}_\tau \sqrt{\sigma^2 + \tau^2} \dd{\sigma} \dd{z}
- + \vu{e}_z (\sigma^2 + \tau^2) \dd{\sigma} \dd{\tau}
+ \begin{aligned}
+ \nabla^2 \vb{V}
+ &= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\tau} + \pdvn{2}{V_\sigma}{z}
+ + \frac{2 \tau}{\rho^4} \pdv{V_\tau}{\sigma} - \frac{2 \sigma}{\rho^4} \pdv{V_\tau}{\tau} - \frac{V_\sigma}{\rho^4} \bigg)
+ \\
+ &\quad\: + \vu{e}_\tau \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\tau} + \pdvn{2}{V_\tau}{z}
+ - \frac{2 \tau}{\rho^4} \pdv{V_\sigma}{\sigma} + \frac{2 \sigma}{\rho^4} \pdv{V_\sigma}{\tau} - \frac{V_\tau}{\rho^4} \bigg)
+ \\
+ &\quad\: + \vu{e}_z \bigg( \frac{1}{\rho^2} \pdvn{2}{V_z}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_z}{\tau} + \pdvn{2}{V_z}{z} \bigg)
+ \end{aligned}
}
\end{aligned}$$
$$\begin{aligned}
\boxed{
- \dd{\vu{\ell}}
- = \vu{e}_\sigma \sqrt{\sigma^2 + \tau^2} \dd{\sigma}
- + \vu{e}_\tau \sqrt{\sigma^2 + \tau^2} \dd{\tau}
- + \vu{e}_z \dd{z}
+ \begin{aligned}
+ \nabla \cdot \overline{\overline{\mathbf{T}}}
+ &= \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{T_{\sigma \sigma}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau \sigma}}{\tau} + \pdv{T_{z \sigma}}{z}
+ + \frac{\sigma T_{\sigma \sigma}}{\rho^3} + \frac{\tau T_{\sigma \tau}}{\rho^3}
+ + \frac{\tau T_{\tau \sigma}}{\rho^3} - \frac{\sigma T_{\tau \tau}}{\rho^3} \bigg)
+ \\
+ &+ \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{T_{\sigma \tau}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau \tau}}{\tau} + \pdv{T_{k \tau}}{z}
+ - \frac{\tau T_{\sigma \sigma}}{\rho^3} + \frac{\sigma T_{\sigma \tau}}{\rho^3}
+ + \frac{\sigma T_{\tau \sigma}}{\rho^3} + \frac{\tau T_{\tau \tau}}{\rho^3} \bigg)
+ \\
+ &+ \vu{e}_z \bigg( \frac{1}{\rho} \pdv{T_{\sigma z}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau z}}{\tau} + \pdv{T_{zz}}{z}
+ + \frac{\sigma T_{\sigma z}}{\rho^3} + \frac{\tau T_{\tau z}}{\rho^3} \bigg)
+ \end{aligned}
}
\end{aligned}$$
+
## References
1. M.L. Boas,
*Mathematical methods in the physical sciences*, 2nd edition,