summaryrefslogtreecommitdiff
path: root/source/know/concept/cylindrical-polar-coordinates
diff options
context:
space:
mode:
authorPrefetch2022-10-14 23:25:28 +0200
committerPrefetch2022-10-14 23:25:28 +0200
commit6ce0bb9a8f9fd7d169cbb414a9537d68c5290aae (patch)
treea0abb6b22f77c0e84ed38277d14662412ce14f39 /source/know/concept/cylindrical-polar-coordinates
Initial commit after migration from Hugo
Diffstat (limited to 'source/know/concept/cylindrical-polar-coordinates')
-rw-r--r--source/know/concept/cylindrical-polar-coordinates/index.md200
1 files changed, 200 insertions, 0 deletions
diff --git a/source/know/concept/cylindrical-polar-coordinates/index.md b/source/know/concept/cylindrical-polar-coordinates/index.md
new file mode 100644
index 0000000..a91e53e
--- /dev/null
+++ b/source/know/concept/cylindrical-polar-coordinates/index.md
@@ -0,0 +1,200 @@
+---
+title: "Cylindrical polar coordinates"
+date: 2021-07-26
+categories:
+- Mathematics
+- Physics
+layout: "concept"
+---
+
+**Cylindrical polar coordinates** are an extension of polar coordinates to 3D,
+which describes the location of a point in space
+using the coordinates $(r, \varphi, z)$.
+The $z$-axis is unchanged from Cartesian coordinates,
+hence it is called a *cylindrical* system.
+
+Cartesian coordinates $(x, y, z)$
+and the cylindrical system $(r, \varphi, z)$ are related by:
+
+$$\begin{aligned}
+ \boxed{
+ \begin{aligned}
+ x &= r \cos\varphi \\
+ y &= r \sin\varphi \\
+ z &= z
+ \end{aligned}
+ }
+\end{aligned}$$
+
+Conversely, a point given in $(x, y, z)$
+can be converted to $(r, \varphi, z)$
+using these formulae:
+
+$$\begin{aligned}
+ \boxed{
+ r = \sqrt{x^2 + y^2}
+ \qquad
+ \varphi = \mathtt{atan2}(y, x)
+ \qquad
+ z = z
+ }
+\end{aligned}$$
+
+The cylindrical polar coordinates form an orthogonal
+[curvilinear system](/know/concept/curvilinear-coordinates/),
+whose scale factors $h_r$, $h_\varphi$ and $h_z$ we want to find.
+To do so, we calculate the differentials of the Cartesian coordinates:
+
+$$\begin{aligned}
+ \dd{x} = \dd{r} \cos\varphi - \dd{\varphi} r \sin\varphi
+ \qquad
+ \dd{y} = \dd{r} \sin\varphi + \dd{\varphi} r \cos\varphi
+ \qquad
+ \dd{z} = \dd{z}
+\end{aligned}$$
+
+And then we calculate the line element $\dd{\ell}^2$,
+skipping many terms thanks to orthogonality,
+
+$$\begin{aligned}
+ \dd{\ell}^2
+ &= \dd{r}^2 \big( \cos^2(\varphi) + \sin^2(\varphi) \big)
+ + \dd{\varphi}^2 \big( r^2 \sin^2(\varphi) + r^2 \cos^2(\varphi) \big)
+ + \dd{z}^2
+ \\
+ &= \dd{r}^2 + r^2 \: \dd{\varphi}^2 + \dd{z}^2
+\end{aligned}$$
+
+Finally, we can simply read off
+the squares of the desired scale factors
+$h_r^2$, $h_\varphi^2$ and $h_z^2$:
+
+$$\begin{aligned}
+ \boxed{
+ h_r = 1
+ \qquad
+ h_\varphi = r
+ \qquad
+ h_z = 1
+ }
+\end{aligned}$$
+
+With these factors, we can easily convert things from the Cartesian system
+using the standard formulae for orthogonal curvilinear coordinates.
+The basis vectors are:
+
+$$\begin{aligned}
+ \boxed{
+ \begin{aligned}
+ \vu{e}_r
+ &= \cos\varphi \:\vu{e}_x + \sin\varphi \:\vu{e}_y
+ \\
+ \vu{e}_\varphi
+ &= - \sin\varphi \:\vu{e}_x + \cos\varphi \:\vu{e}_y
+ \\
+ \vu{e}_z
+ &= \vu{e}_z
+ \end{aligned}
+ }
+\end{aligned}$$
+
+The basic vector operations (gradient, divergence, Laplacian and curl) are given by:
+
+$$\begin{aligned}
+ \boxed{
+ \nabla f
+ = \vu{e}_r \pdv{f}{r}
+ + \vu{e}_\varphi \frac{1}{r} \pdv{f}{\varphi}
+ + \mathbf{e}_z \pdv{f}{z}
+ }
+\end{aligned}$$
+
+$$\begin{aligned}
+ \boxed{
+ \nabla \cdot \vb{V}
+ = \frac{1}{r} \pdv{(r V_r)}{r}
+ + \frac{1}{r} \pdv{V_\varphi}{\varphi}
+ + \pdv{V_z}{z}
+ }
+\end{aligned}$$
+
+$$\begin{aligned}
+ \boxed{
+ \nabla^2 f
+ = \frac{1}{r} \pdv{}{r}\Big( r \pdv{f}{r} \Big)
+ + \frac{1}{r^2} \pdvn{2}{f}{\varphi}
+ + \pdvn{2}{f}{z}
+ }
+\end{aligned}$$
+
+$$\begin{aligned}
+ \boxed{
+ \begin{aligned}
+ \nabla \times \vb{V}
+ &= \vu{e}_r \Big( \frac{1}{r} \pdv{V_z}{\varphi} - \pdv{V_\varphi}{z} \Big)
+ \\
+ &+ \vu{e}_\varphi \Big( \pdv{V_r}{z} - \pdv{V_z}{r} \Big)
+ \\
+ &+ \frac{\vu{e}_z}{r} \Big( \pdv{(r V_\varphi)}{r} - \pdv{V_r}{\varphi} \Big)
+ \end{aligned}
+ }
+\end{aligned}$$
+
+The differential element of volume $\dd{V}$
+takes the following form:
+
+$$\begin{aligned}
+ \boxed{
+ \dd{V}
+ = r \dd{r} \dd{\varphi} \dd{z}
+ }
+\end{aligned}$$
+
+So, for example, an integral over all of space is converted like so:
+
+$$\begin{aligned}
+ \iiint_{-\infty}^\infty f(x, y, z) \dd{V}
+ = \int_{-\infty}^{\infty} \int_0^{2\pi} \int_0^\infty f(r, \varphi, z) \: r \dd{r} \dd{\varphi} \dd{z}
+\end{aligned}$$
+
+The isosurface elements are as follows, where $S_r$ is a surface at constant $r$, etc.:
+
+$$\begin{aligned}
+ \boxed{
+ \begin{aligned}
+ \dd{S}_r = r \dd{\varphi} \dd{z}
+ \qquad
+ \dd{S}_\varphi = \dd{r} \dd{z}
+ \qquad
+ \dd{S}_z = r \dd{r} \dd{\varphi}
+ \end{aligned}
+ }
+\end{aligned}$$
+
+Similarly, the normal vector element $\dd{\vu{S}}$ for an arbitrary surface is given by:
+
+$$\begin{aligned}
+ \boxed{
+ \dd{\vu{S}}
+ = \vu{e}_r \: r \dd{\varphi} \dd{z}
+ + \vu{e}_\varphi \dd{r} \dd{z}
+ + \vu{e}_z \: r \dd{r} \dd{\varphi}
+ }
+\end{aligned}$$
+
+And finally, the tangent vector element $\dd{\vu{\ell}}$ of a given curve is as follows:
+
+$$\begin{aligned}
+ \boxed{
+ \dd{\vu{\ell}}
+ = \vu{e}_r \dd{r}
+ + \vu{e}_\varphi \: r \dd{\varphi}
+ + \vu{e}_z \dd{z}
+ }
+\end{aligned}$$
+
+
+## References
+1. M.L. Boas,
+ *Mathematical methods in the physical sciences*, 2nd edition,
+ Wiley.