summaryrefslogtreecommitdiff
path: root/source/know/concept/deutsch-jozsa-algorithm
diff options
context:
space:
mode:
authorPrefetch2022-10-23 22:18:11 +0200
committerPrefetch2022-10-23 22:18:11 +0200
commitbcae81336764eb6c4cdf0f91e2fe632b625dd8b2 (patch)
treebf353d26203b6792bb2ab5d7bbb5c65819c9e0a0 /source/know/concept/deutsch-jozsa-algorithm
parent16555851b6514a736c5c9d8e73de7da7fc9b6288 (diff)
Optimize and improve naming of all images in knowledge base
Diffstat (limited to 'source/know/concept/deutsch-jozsa-algorithm')
-rw-r--r--source/know/concept/deutsch-jozsa-algorithm/deutsch-circuit.avifbin0 -> 2028 bytes
-rw-r--r--source/know/concept/deutsch-jozsa-algorithm/deutsch-jozsa-circuit.avifbin0 -> 3311 bytes
-rw-r--r--source/know/concept/deutsch-jozsa-algorithm/index.md12
3 files changed, 5 insertions, 7 deletions
diff --git a/source/know/concept/deutsch-jozsa-algorithm/deutsch-circuit.avif b/source/know/concept/deutsch-jozsa-algorithm/deutsch-circuit.avif
new file mode 100644
index 0000000..c498cd9
--- /dev/null
+++ b/source/know/concept/deutsch-jozsa-algorithm/deutsch-circuit.avif
Binary files differ
diff --git a/source/know/concept/deutsch-jozsa-algorithm/deutsch-jozsa-circuit.avif b/source/know/concept/deutsch-jozsa-algorithm/deutsch-jozsa-circuit.avif
new file mode 100644
index 0000000..2312ff3
--- /dev/null
+++ b/source/know/concept/deutsch-jozsa-algorithm/deutsch-jozsa-circuit.avif
Binary files differ
diff --git a/source/know/concept/deutsch-jozsa-algorithm/index.md b/source/know/concept/deutsch-jozsa-algorithm/index.md
index bbdd58d..5f2f268 100644
--- a/source/know/concept/deutsch-jozsa-algorithm/index.md
+++ b/source/know/concept/deutsch-jozsa-algorithm/index.md
@@ -27,6 +27,7 @@ while classical computers need up to $$2^{N - 1} + 1$$ queries
for an $$N$$-bit $$x$$.
+
## Deutsch algorithm
The Deutsch algorithm handles the simplest case,
@@ -40,9 +41,7 @@ In other words, we only need to determine if $$f(0) = f(1)$$ or $$f(0) \neq f(1)
To do this, we use the following quantum circuit,
where $$U_f$$ is the oracle we query:
-<a href="deutsch-circuit.png">
-<img src="deutsch-circuit.png" style="width:48%">
-</a>
+{% include image.html file="deutsch-circuit.png" width="48%" alt="Deutsch circuit" %}
Due to unitarity constraints,
the action of $$U_f$$ is defined to be as follows,
@@ -134,16 +133,15 @@ A classical computer would need to query it twice,
once with input $$x = 0$$, and again with $$x = 1$$.
-## Full Deutsch-Jozsa algorithm
+
+## Deutsch-Jozsa algorithm
The Deutsch-Jozsa algorithm generalizes the above to $$N$$-bit inputs $$x$$.
We are promised that $$f(x)$$ is either constant or balanced;
other possibilities are assumed to be impossible.
This algorithm is then implemented by the following quantum circuit:
-<a href="deutsch-jozsa-circuit.png">
-<img src="deutsch-jozsa-circuit.png" style="width:52%">
-</a>
+{% include image.html file="deutsch-jozsa-circuit.png" width="52%" alt="Deutsch-Jozsa circuit" %}
There are $$N$$ qubits in initial state $$\Ket{0}$$, and one in $$\Ket{1}$$.
For clarity, the oracle $$U_f$$ works like so: