summaryrefslogtreecommitdiff
path: root/source/know/concept/dirac-delta-function
diff options
context:
space:
mode:
authorPrefetch2022-10-14 23:25:28 +0200
committerPrefetch2022-10-14 23:25:28 +0200
commit6ce0bb9a8f9fd7d169cbb414a9537d68c5290aae (patch)
treea0abb6b22f77c0e84ed38277d14662412ce14f39 /source/know/concept/dirac-delta-function
Initial commit after migration from Hugo
Diffstat (limited to 'source/know/concept/dirac-delta-function')
-rw-r--r--source/know/concept/dirac-delta-function/index.md119
1 files changed, 119 insertions, 0 deletions
diff --git a/source/know/concept/dirac-delta-function/index.md b/source/know/concept/dirac-delta-function/index.md
new file mode 100644
index 0000000..63edd81
--- /dev/null
+++ b/source/know/concept/dirac-delta-function/index.md
@@ -0,0 +1,119 @@
+---
+title: "Dirac delta function"
+date: 2021-02-22
+categories:
+- Mathematics
+- Physics
+layout: "concept"
+---
+
+The **Dirac delta function** $\delta(x)$, often just the **delta function**,
+is a function (or, more accurately, a [Schwartz distribution](/know/concept/schwartz-distribution/))
+that is commonly used in physics.
+It is an infinitely narrow discontinuous "spike" at $x = 0$ whose area is
+defined to be 1:
+
+$$\begin{aligned}
+ \boxed{
+ \delta(x) \equiv
+ \begin{cases}
+ +\infty & \mathrm{if}\: x = 0 \\
+ 0 & \mathrm{if}\: x \neq 0
+ \end{cases}
+ \quad \mathrm{and} \quad
+ \int_{-\varepsilon}^\varepsilon \delta(x) \dd{x} = 1
+ }
+\end{aligned}$$
+
+It is sometimes also called the **sampling function**, thanks to its most
+important property: the so-called **sampling property**:
+
+$$\begin{aligned}
+ \boxed{
+ \int f(x) \: \delta(x - x_0) \: dx = \int f(x) \: \delta(x_0 - x) \: dx = f(x_0)
+ }
+\end{aligned}$$
+
+$\delta(x)$ is thus quite an effective weapon against integrals. This may not seem very
+useful due to its "unnatural" definition, but in fact it appears as the
+limit of several reasonable functions:
+
+$$\begin{aligned}
+ \delta(x)
+ = \lim_{n \to +\infty} \!\Big\{ \frac{n}{\sqrt{\pi}} \exp(- n^2 x^2) \Big\}
+ = \lim_{n \to +\infty} \!\Big\{ \frac{n}{\pi} \frac{1}{1 + n^2 x^2} \Big\}
+ = \lim_{n \to +\infty} \!\Big\{ \frac{\sin(n x)}{\pi x} \Big\}
+\end{aligned}$$
+
+The last one is especially important, since it is equivalent to the
+following integral, which appears very often in the context of
+[Fourier transforms](/know/concept/fourier-transform/):
+
+$$\begin{aligned}
+ \delta(x)
+ = \lim_{n \to +\infty} \!\Big\{\frac{\sin(n x)}{\pi x}\Big\}
+ = \frac{1}{2\pi} \int_{-\infty}^\infty \exp(i k x) \dd{k}
+ \:\:\propto\:\: \hat{\mathcal{F}}\{1\}
+\end{aligned}$$
+
+When the argument of $\delta(x)$ is scaled, the delta function is itself scaled:
+
+$$\begin{aligned}
+ \boxed{
+ \delta(s x) = \frac{1}{|s|} \delta(x)
+ }
+\end{aligned}$$
+
+<div class="accordion">
+<input type="checkbox" id="proof-scale"/>
+<label for="proof-scale">Proof</label>
+<div class="hidden">
+<label for="proof-scale">Proof.</label>
+Because it is symmetric, $\delta(s x) = \delta(|s| x)$.
+Then by substituting $\sigma = |s| x$:
+
+$$\begin{aligned}
+ \int \delta(|s| x) \dd{x}
+ &= \frac{1}{|s|} \int \delta(\sigma) \dd{\sigma} = \frac{1}{|s|}
+\end{aligned}$$
+</div>
+</div>
+
+An even more impressive property is the behaviour of the derivative of $\delta(x)$:
+
+$$\begin{aligned}
+ \boxed{
+ \int f(\xi) \: \delta'(x - \xi) \dd{\xi} = f'(x)
+ }
+\end{aligned}$$
+
+<div class="accordion">
+<input type="checkbox" id="proof-dv1"/>
+<label for="proof-dv1">Proof</label>
+<div class="hidden">
+<label for="proof-dv1">Proof.</label>
+Note which variable is used for the
+differentiation, and that $\delta'(x - \xi) = - \delta'(\xi - x)$:
+
+$$\begin{aligned}
+ \int f(\xi) \: \dv{\delta(x - \xi)}{x} \dd{\xi}
+ &= \dv{}{x}\int f(\xi) \: \delta(x - \xi) \dd{x}
+ = f'(x)
+\end{aligned}$$
+</div>
+</div>
+
+This property also generalizes nicely for the higher-order derivatives:
+
+$$\begin{aligned}
+ \boxed{
+ \int f(\xi) \: \dvn{n}{\delta(x - \xi)}{x} \dd{\xi} = \dvn{n}{f(x)}{x}
+ }
+\end{aligned}$$
+
+
+
+## References
+1. O. Bang,
+ *Applied mathematics for physicists: lecture notes*, 2019,
+ unpublished.