diff options
author | Prefetch | 2022-10-14 23:25:28 +0200 |
---|---|---|
committer | Prefetch | 2022-10-14 23:25:28 +0200 |
commit | 6ce0bb9a8f9fd7d169cbb414a9537d68c5290aae (patch) | |
tree | a0abb6b22f77c0e84ed38277d14662412ce14f39 /source/know/concept/dirac-delta-function |
Initial commit after migration from Hugo
Diffstat (limited to 'source/know/concept/dirac-delta-function')
-rw-r--r-- | source/know/concept/dirac-delta-function/index.md | 119 |
1 files changed, 119 insertions, 0 deletions
diff --git a/source/know/concept/dirac-delta-function/index.md b/source/know/concept/dirac-delta-function/index.md new file mode 100644 index 0000000..63edd81 --- /dev/null +++ b/source/know/concept/dirac-delta-function/index.md @@ -0,0 +1,119 @@ +--- +title: "Dirac delta function" +date: 2021-02-22 +categories: +- Mathematics +- Physics +layout: "concept" +--- + +The **Dirac delta function** $\delta(x)$, often just the **delta function**, +is a function (or, more accurately, a [Schwartz distribution](/know/concept/schwartz-distribution/)) +that is commonly used in physics. +It is an infinitely narrow discontinuous "spike" at $x = 0$ whose area is +defined to be 1: + +$$\begin{aligned} + \boxed{ + \delta(x) \equiv + \begin{cases} + +\infty & \mathrm{if}\: x = 0 \\ + 0 & \mathrm{if}\: x \neq 0 + \end{cases} + \quad \mathrm{and} \quad + \int_{-\varepsilon}^\varepsilon \delta(x) \dd{x} = 1 + } +\end{aligned}$$ + +It is sometimes also called the **sampling function**, thanks to its most +important property: the so-called **sampling property**: + +$$\begin{aligned} + \boxed{ + \int f(x) \: \delta(x - x_0) \: dx = \int f(x) \: \delta(x_0 - x) \: dx = f(x_0) + } +\end{aligned}$$ + +$\delta(x)$ is thus quite an effective weapon against integrals. This may not seem very +useful due to its "unnatural" definition, but in fact it appears as the +limit of several reasonable functions: + +$$\begin{aligned} + \delta(x) + = \lim_{n \to +\infty} \!\Big\{ \frac{n}{\sqrt{\pi}} \exp(- n^2 x^2) \Big\} + = \lim_{n \to +\infty} \!\Big\{ \frac{n}{\pi} \frac{1}{1 + n^2 x^2} \Big\} + = \lim_{n \to +\infty} \!\Big\{ \frac{\sin(n x)}{\pi x} \Big\} +\end{aligned}$$ + +The last one is especially important, since it is equivalent to the +following integral, which appears very often in the context of +[Fourier transforms](/know/concept/fourier-transform/): + +$$\begin{aligned} + \delta(x) + = \lim_{n \to +\infty} \!\Big\{\frac{\sin(n x)}{\pi x}\Big\} + = \frac{1}{2\pi} \int_{-\infty}^\infty \exp(i k x) \dd{k} + \:\:\propto\:\: \hat{\mathcal{F}}\{1\} +\end{aligned}$$ + +When the argument of $\delta(x)$ is scaled, the delta function is itself scaled: + +$$\begin{aligned} + \boxed{ + \delta(s x) = \frac{1}{|s|} \delta(x) + } +\end{aligned}$$ + +<div class="accordion"> +<input type="checkbox" id="proof-scale"/> +<label for="proof-scale">Proof</label> +<div class="hidden"> +<label for="proof-scale">Proof.</label> +Because it is symmetric, $\delta(s x) = \delta(|s| x)$. +Then by substituting $\sigma = |s| x$: + +$$\begin{aligned} + \int \delta(|s| x) \dd{x} + &= \frac{1}{|s|} \int \delta(\sigma) \dd{\sigma} = \frac{1}{|s|} +\end{aligned}$$ +</div> +</div> + +An even more impressive property is the behaviour of the derivative of $\delta(x)$: + +$$\begin{aligned} + \boxed{ + \int f(\xi) \: \delta'(x - \xi) \dd{\xi} = f'(x) + } +\end{aligned}$$ + +<div class="accordion"> +<input type="checkbox" id="proof-dv1"/> +<label for="proof-dv1">Proof</label> +<div class="hidden"> +<label for="proof-dv1">Proof.</label> +Note which variable is used for the +differentiation, and that $\delta'(x - \xi) = - \delta'(\xi - x)$: + +$$\begin{aligned} + \int f(\xi) \: \dv{\delta(x - \xi)}{x} \dd{\xi} + &= \dv{}{x}\int f(\xi) \: \delta(x - \xi) \dd{x} + = f'(x) +\end{aligned}$$ +</div> +</div> + +This property also generalizes nicely for the higher-order derivatives: + +$$\begin{aligned} + \boxed{ + \int f(\xi) \: \dvn{n}{\delta(x - \xi)}{x} \dd{\xi} = \dvn{n}{f(x)}{x} + } +\end{aligned}$$ + + + +## References +1. O. Bang, + *Applied mathematics for physicists: lecture notes*, 2019, + unpublished. |