summaryrefslogtreecommitdiff
path: root/source/know/concept/dirac-notation
diff options
context:
space:
mode:
authorPrefetch2022-10-14 23:25:28 +0200
committerPrefetch2022-10-14 23:25:28 +0200
commit6ce0bb9a8f9fd7d169cbb414a9537d68c5290aae (patch)
treea0abb6b22f77c0e84ed38277d14662412ce14f39 /source/know/concept/dirac-notation
Initial commit after migration from Hugo
Diffstat (limited to 'source/know/concept/dirac-notation')
-rw-r--r--source/know/concept/dirac-notation/index.md130
1 files changed, 130 insertions, 0 deletions
diff --git a/source/know/concept/dirac-notation/index.md b/source/know/concept/dirac-notation/index.md
new file mode 100644
index 0000000..414b903
--- /dev/null
+++ b/source/know/concept/dirac-notation/index.md
@@ -0,0 +1,130 @@
+---
+title: "Dirac notation"
+date: 2021-02-22
+categories:
+- Quantum mechanics
+- Physics
+layout: "concept"
+---
+
+**Dirac notation** is a notation to do calculations in a [Hilbert space](/know/concept/hilbert-space/)
+without needing to worry about the space's representation. It is
+basically the *lingua franca* of quantum mechanics.
+
+In Dirac notation there are **kets** $\Ket{V}$ from the Hilbert space
+$\mathbb{H}$ and **bras** $\Bra{V}$ from a dual $\mathbb{H}'$ of the
+former. Crucially, the bras and kets are from different Hilbert spaces
+and therefore cannot be added, but every bra has a corresponding ket and
+vice versa.
+
+Bras and kets can be combined in two ways: the **inner product**
+$\Inprod{V}{W}$, which returns a scalar, and the **outer product**
+$\Ket{V} \Bra{W}$, which returns a mapping $\hat{L}$ from kets $\Ket{V}$
+to other kets $\Ket{V'}$, i.e. a linear operator. Recall that the
+Hilbert inner product must satisfy:
+
+$$\begin{aligned}
+ \Inprod{V}{W} = \Inprod{W}{V}^*
+\end{aligned}$$
+
+So far, nothing has been said about the actual representation of bras or
+kets. If we represent kets as $N$-dimensional columns vectors, the
+corresponding bras are given by the kets' adjoints, i.e. their transpose
+conjugates:
+
+$$\begin{aligned}
+ \Ket{V} =
+ \begin{bmatrix}
+ v_1 \\ \vdots \\ v_N
+ \end{bmatrix}
+ \quad \implies \quad
+ \Bra{V} =
+ \begin{bmatrix}
+ v_1^* & \cdots & v_N^*
+ \end{bmatrix}
+\end{aligned}$$
+
+The inner product $\Inprod{V}{W}$ is then just the familiar dot product $V \cdot W$:
+
+$$\begin{gathered}
+ \Inprod{V}{W}
+ =
+ \begin{bmatrix}
+ v_1^* & \cdots & v_N^*
+ \end{bmatrix}
+ \cdot
+ \begin{bmatrix}
+ w_1 \\ \vdots \\ w_N
+ \end{bmatrix}
+ = v_1^* w_1 + ... + v_N^* w_N
+\end{gathered}$$
+
+Meanwhile, the outer product $\Ket{V} \Bra{W}$ creates an $N \cross N$ matrix:
+
+$$\begin{gathered}
+ \Ket{V} \Bra{W}
+ =
+ \begin{bmatrix}
+ v_1 \\ \vdots \\ v_N
+ \end{bmatrix}
+ \cdot
+ \begin{bmatrix}
+ w_1^* & \cdots & w_N^*
+ \end{bmatrix}
+ =
+ \begin{bmatrix}
+ v_1 w_1^* & \cdots & v_1 w_N^* \\
+ \vdots & \ddots & \vdots \\
+ v_N w_1^* & \cdots & v_N w_N^*
+ \end{bmatrix}
+\end{gathered}$$
+
+If the kets are instead represented by functions $f(x)$ of
+$x \in [a, b]$, then the bras represent *functionals* $F[u(x)]$ which
+take an unknown function $u(x)$ as an argument and turn it into a scalar
+using integration:
+
+$$\begin{aligned}
+ \Ket{f} = f(x)
+ \quad \implies \quad
+ \Bra{f}
+ = F[u(x)]
+ = \int_a^b f^*(x) \: u(x) \dd{x}
+\end{aligned}$$
+
+Consequently, the inner product is simply the following familiar integral:
+
+$$\begin{gathered}
+ \Inprod{f}{g}
+ = F[g(x)]
+ = \int_a^b f^*(x) \: g(x) \dd{x}
+\end{gathered}$$
+
+However, the outer product becomes something rather abstract:
+
+$$\begin{gathered}
+ \Ket{f} \Bra{g}
+ = f(x) \: G[u(x)]
+ = f(x) \int_a^b g^*(\xi) \: u(\xi) \dd{\xi}
+\end{gathered}$$
+
+This result makes more sense if we surround it by a bra and a ket:
+
+$$\begin{aligned}
+ \Bra{u} \!\Big(\!\Ket{f} \Bra{g}\!\Big)\! \Ket{w}
+ &= U\big[f(x) \: G[w(x)]\big]
+ = U\Big[ f(x) \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big]
+ \\
+ &= \int_a^b u^*(x) \: f(x) \: \Big(\int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) \dd{x}
+ \\
+ &= \Big( \int_a^b u^*(x) \: f(x) \dd{x} \Big) \Big( \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big)
+ \\
+ &= \Inprod{u}{f} \Inprod{g}{w}
+\end{aligned}$$
+
+
+
+## References
+1. R. Shankar,
+ *Principles of quantum mechanics*, 2nd edition,
+ Springer.