diff options
| author | Prefetch | 2022-10-14 23:25:28 +0200 | 
|---|---|---|
| committer | Prefetch | 2022-10-14 23:25:28 +0200 | 
| commit | 6ce0bb9a8f9fd7d169cbb414a9537d68c5290aae (patch) | |
| tree | a0abb6b22f77c0e84ed38277d14662412ce14f39 /source/know/concept/dirac-notation | |
Initial commit after migration from Hugo
Diffstat (limited to 'source/know/concept/dirac-notation')
| -rw-r--r-- | source/know/concept/dirac-notation/index.md | 130 | 
1 files changed, 130 insertions, 0 deletions
| diff --git a/source/know/concept/dirac-notation/index.md b/source/know/concept/dirac-notation/index.md new file mode 100644 index 0000000..414b903 --- /dev/null +++ b/source/know/concept/dirac-notation/index.md @@ -0,0 +1,130 @@ +--- +title: "Dirac notation" +date: 2021-02-22 +categories: +- Quantum mechanics +- Physics +layout: "concept" +--- + +**Dirac notation** is a notation to do calculations in a [Hilbert space](/know/concept/hilbert-space/) +without needing to worry about the space's representation. It is +basically the *lingua franca* of quantum mechanics. + +In Dirac notation there are **kets** $\Ket{V}$ from the Hilbert space +$\mathbb{H}$ and **bras** $\Bra{V}$ from a dual $\mathbb{H}'$ of the +former. Crucially, the bras and kets are from different Hilbert spaces +and therefore cannot be added, but every bra has a corresponding ket and +vice versa. + +Bras and kets can be combined in two ways: the **inner product** +$\Inprod{V}{W}$, which returns a scalar, and the **outer product** +$\Ket{V} \Bra{W}$, which returns a mapping $\hat{L}$ from kets $\Ket{V}$ +to other kets $\Ket{V'}$, i.e. a linear operator. Recall that the +Hilbert inner product must satisfy: + +$$\begin{aligned} +    \Inprod{V}{W} = \Inprod{W}{V}^* +\end{aligned}$$ + +So far, nothing has been said about the actual representation of bras or +kets. If we represent kets as $N$-dimensional columns vectors, the +corresponding bras are given by the kets' adjoints, i.e. their transpose +conjugates: + +$$\begin{aligned} +    \Ket{V} = +    \begin{bmatrix} +        v_1 \\ \vdots \\ v_N +    \end{bmatrix} +    \quad \implies \quad +    \Bra{V} = +    \begin{bmatrix} +        v_1^* & \cdots & v_N^* +    \end{bmatrix} +\end{aligned}$$ + +The inner product $\Inprod{V}{W}$ is then just the familiar dot product $V \cdot W$: + +$$\begin{gathered} +    \Inprod{V}{W} +    = +    \begin{bmatrix} +        v_1^* & \cdots & v_N^* +    \end{bmatrix} +    \cdot +    \begin{bmatrix} +        w_1 \\ \vdots \\ w_N +    \end{bmatrix} +    = v_1^* w_1 + ... + v_N^* w_N +\end{gathered}$$ + +Meanwhile, the outer product $\Ket{V} \Bra{W}$ creates an $N \cross N$ matrix: + +$$\begin{gathered} +    \Ket{V} \Bra{W} +    = +    \begin{bmatrix} +        v_1 \\ \vdots \\ v_N +    \end{bmatrix} +    \cdot +    \begin{bmatrix} +        w_1^* & \cdots & w_N^* +    \end{bmatrix} +    = +    \begin{bmatrix} +        v_1 w_1^* & \cdots & v_1 w_N^* \\ +        \vdots & \ddots & \vdots \\ +        v_N w_1^* & \cdots & v_N w_N^* +    \end{bmatrix} +\end{gathered}$$ + +If the kets are instead represented by functions $f(x)$ of +$x \in [a, b]$, then the bras represent *functionals* $F[u(x)]$ which +take an unknown function $u(x)$ as an argument and turn it into a scalar +using integration: + +$$\begin{aligned} +    \Ket{f} = f(x) +    \quad \implies \quad +    \Bra{f} +    = F[u(x)] +    = \int_a^b f^*(x) \: u(x) \dd{x} +\end{aligned}$$ + +Consequently, the inner product is simply the following familiar integral: + +$$\begin{gathered} +    \Inprod{f}{g} +    = F[g(x)] +    = \int_a^b f^*(x) \: g(x) \dd{x} +\end{gathered}$$ + +However, the outer product becomes something rather abstract: + +$$\begin{gathered} +    \Ket{f} \Bra{g} +    = f(x) \: G[u(x)] +    = f(x) \int_a^b g^*(\xi) \: u(\xi) \dd{\xi} +\end{gathered}$$ + +This result makes more sense if we surround it by a bra and a ket: + +$$\begin{aligned} +    \Bra{u} \!\Big(\!\Ket{f} \Bra{g}\!\Big)\! \Ket{w} +    &= U\big[f(x) \: G[w(x)]\big] +    = U\Big[ f(x) \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big] +    \\ +    &= \int_a^b u^*(x) \: f(x) \: \Big(\int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) \dd{x} +    \\ +    &= \Big( \int_a^b u^*(x) \: f(x) \dd{x} \Big) \Big( \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) +    \\ +    &= \Inprod{u}{f} \Inprod{g}{w} +\end{aligned}$$ + + + +## References +1.  R. Shankar, +    *Principles of quantum mechanics*, 2nd edition, +    Springer. | 
