summaryrefslogtreecommitdiff
path: root/source/know/concept/drude-model
diff options
context:
space:
mode:
authorPrefetch2024-04-09 16:49:41 +0200
committerPrefetch2024-04-09 16:49:41 +0200
commit6b51a2bf7d43f9f83e668d0b97d24640da79e44d (patch)
tree1b02203df492145285a48016a7bd3587851d901d /source/know/concept/drude-model
parent658c8aa0961f742b459162aa3a91d5b641b53146 (diff)
Expand knowledge base
Diffstat (limited to 'source/know/concept/drude-model')
-rw-r--r--source/know/concept/drude-model/index.md27
1 files changed, 12 insertions, 15 deletions
diff --git a/source/know/concept/drude-model/index.md b/source/know/concept/drude-model/index.md
index 0026d90..8fcd7fb 100644
--- a/source/know/concept/drude-model/index.md
+++ b/source/know/concept/drude-model/index.md
@@ -11,7 +11,7 @@ layout: "concept"
The **Drude model**, also known as
the **Drude-Lorentz model** due to its analogy
-to the [Lorentz oscillator model](/know/concept/lorentz-oscillator-model/)
+to the [Lorentz oscillator model](/know/concept/lorentz-oscillator-model/),
classically predicts the [dielectric function](/know/concept/dielectric-function/)
and electric conductivity of a gas of free charges,
as found in metals and doped semiconductors.
@@ -33,17 +33,16 @@ $$\begin{aligned}
\end{aligned}$$
Where $$m$$ and $$q < 0$$ are the mass and charge of the electron.
-The first term is Newton's third law,
+The first term is Newton's second law,
and the last term represents a damping force
slowing down the electrons at rate $$\gamma$$.
Inserting the ansatz $$\vb{x}(t) = \vb{x}_0 e^{- i \omega t}$$
-and isolating for the displacement $$\vb{x}$$, we find:
+and isolating for the amplitude $$\vb{x}_0$$, we find:
$$\begin{aligned}
- \vb{x}(t)
- = \vb{x}_0 e^{- i \omega t}
- = - \frac{q \vb{E}}{m (\omega^2 + i \gamma \omega)}
+ \vb{x}_0
+ = - \frac{q \vb{E}_0}{m (\omega^2 + i \gamma \omega)}
\end{aligned}$$
The polarization density $$\vb{P}(t)$$ is therefore as shown below.
@@ -76,8 +75,10 @@ leading to so-called **plasma oscillations** of the electron density
(see also [Langmuir waves](/know/concept/langmuir-waves/)):
$$\begin{aligned}
- \varepsilon_r(\omega)
- = 1 - \frac{\omega_p^2}{\omega^2 + i \gamma \omega}
+ \boxed{
+ \varepsilon_r(\omega)
+ = 1 - \frac{\omega_p^2}{\omega^2 + i \gamma \omega}
+ }
\qquad\qquad
\boxed{
\omega_p
@@ -96,7 +97,7 @@ then we can identify three distinct scenarios for $$\varepsilon_r$$ here:
allowing for self-sustained plasma oscillations.
* $$\omega > \omega_p$$, so $$\varepsilon_r > 0$$,
so the index $$\sqrt{\varepsilon}$$ is real and asymptotically goes to $$1$$,
- leading to high transparency and low reflectivity from air.
+ leading to high transparency and low reflectivity (coming from air).
For most metals $$\omega_p$$ is ultraviolet,
which explains why they typically appear shiny to us.
@@ -158,12 +159,8 @@ the dielectric function $$\varepsilon_r(\omega)$$ can be written as:
$$\begin{aligned}
\boxed{
- \begin{aligned}
- \varepsilon_r(\omega)
- &= 1 - \frac{\omega_p^2}{\omega^2 + i \gamma \omega}
- \\
- &= 1 + \frac{i \sigma(\omega)}{\varepsilon_0 \omega}
- \end{aligned}
+ \varepsilon_r(\omega)
+ = 1 + \frac{i \sigma(\omega)}{\varepsilon_0 \omega}
}
\end{aligned}$$