diff options
author | Prefetch | 2022-10-14 23:25:28 +0200 |
---|---|---|
committer | Prefetch | 2022-10-14 23:25:28 +0200 |
commit | 6ce0bb9a8f9fd7d169cbb414a9537d68c5290aae (patch) | |
tree | a0abb6b22f77c0e84ed38277d14662412ce14f39 /source/know/concept/maxwell-relations |
Initial commit after migration from Hugo
Diffstat (limited to 'source/know/concept/maxwell-relations')
-rw-r--r-- | source/know/concept/maxwell-relations/index.md | 290 |
1 files changed, 290 insertions, 0 deletions
diff --git a/source/know/concept/maxwell-relations/index.md b/source/know/concept/maxwell-relations/index.md new file mode 100644 index 0000000..b546ef3 --- /dev/null +++ b/source/know/concept/maxwell-relations/index.md @@ -0,0 +1,290 @@ +--- +title: "Maxwell relations" +date: 2021-07-08 +categories: +- Physics +- Thermodynamics +layout: "concept" +--- + +The **Maxwell relations** are a useful set of relations in thermodynamics. +They arise from the fact that the order of differentiation is irrelevant +for well-behaved functions (sometimes known as the *Schwarz theorem*), +applied to the [thermodynamic potentials](/know/concept/thermodynamic-potential/). + +We start by proving the general "recipe". +Given that the differential element of some $z$ is defined in terms of +two constant quantities $A$ and $B$ and two independent variables $x$ and $y$: + +$$\begin{aligned} + \dd{z} \equiv A \dd{x} + B \dd{y} +\end{aligned}$$ + +Then the quantities $A$ and $B$ can be extracted +by dividing by $\dd{x}$ and $\dd{y}$ respectively: + +$$\begin{aligned} + A = \Big( \pdv{z}{x} \Big)_y + \qquad + B = \Big( \pdv{z}{y} \Big)_x +\end{aligned}$$ + +By differentiating $A$ and $B$, +and using that the order of differentiation is irrelevant, we find: + +$$\begin{aligned} + \mpdv{z}{y}{x} = + \boxed{ + \Big( \pdv{A}{y} \Big)_x + = \Big( \pdv{B}{x} \Big)_y + } + = \mpdv{z}{x}{y} +\end{aligned}$$ + +Using this, all Maxwell relations are derived. +Each relation also has a reciprocal form: + +$$\begin{aligned} + \Big( \pdv{A}{y} \Big)_x^{-1} = + \boxed{ + \Big( \pdv{y}{A} \Big)_x + = \Big( \pdv{x}{B} \Big)_y + } + = \Big( \pdv{B}{x} \Big)_y^{-1} +\end{aligned}$$ + +The following quantities are useful to rewrite some of the Maxwell relations: +the iso-$P$ thermal expansion coefficient $\alpha$, +the iso-$T$ combressibility $\kappa_T$, +the iso-$S$ combressibility $\kappa_S$, +the iso-$V$ heat capacity $C_V$, +and the iso-$P$ heat capacity $C_P$: + +$$\begin{gathered} + \alpha \equiv \frac{1}{V} \Big( \pdv{V}{T} \Big)_{P,N} + \\ + \kappa_T \equiv - \frac{1}{V} \Big( \pdv{V}{P} \Big)_{T,N} + \qquad \quad + \kappa_S \equiv - \frac{1}{V} \Big( \pdv{V}{P} \Big)_{S,N} + \\ + C_V \equiv T \Big( \pdv{S}{T} \Big)_{V,N} + \qquad \qquad + C_P \equiv T \Big( \pdv{S}{T} \Big)_{P,N} +\end{gathered}$$ + + +## Internal energy + +The following Maxwell relations can be derived +from the internal energy $U(S, V, N)$: + +$$\begin{gathered} + \mpdv{U}{V}{S} = + \boxed{ + \Big( \pdv{T}{V} \Big)_S = - \Big( \pdv{P}{S} \Big)_V + } + = \mpdv{U}{S}{V} + \\ + \mpdv{U}{V}{N} = + \boxed{ + \Big( \pdv{\mu}{V} \Big)_N = - \Big( \pdv{P}{N} \Big)_V + } + = \mpdv{U}{N}{V} + \\ + \mpdv{U}{S}{N} = + \boxed{ + \Big( \pdv{\mu}{S} \Big)_N = \Big( \pdv{T}{N} \Big)_S + } + = \mpdv{U}{N}{S} +\end{gathered}$$ + +And the corresponding reciprocal relations are then given by: + +$$\begin{gathered} + \boxed{ + \Big( \pdv{V}{T} \Big)_S = - \Big( \pdv{S}{P} \Big)_V + } + \\ + \boxed{ + \Big( \pdv{V}{\mu} \Big)_N = - \Big( \pdv{N}{P} \Big)_V + } + \\ + \boxed{ + \Big( \pdv{S}{\mu} \Big)_N = \Big( \pdv{N}{T} \Big)_S + } +\end{gathered}$$ + + +## Enthalpy + +The following Maxwell relations can be derived +from the enthalpy $H(S, P, N)$: + +$$\begin{gathered} + \mpdv{H}{P}{S} = + \boxed{ + \Big( \pdv{T}{P} \Big)_S = \Big( \pdv{V}{S} \Big)_P + } + = \mpdv{H}{S}{P} + \\ + \mpdv{H}{P}{N} = + \boxed{ + \Big( \pdv{\mu}{P} \Big)_N = \Big( \pdv{V}{N} \Big)_P + } + = \mpdv{H}{N}{P} + \\ + \mpdv{H}{N}{S} = + \boxed{ + \Big( \pdv{T}{N} \Big)_S = \Big( \pdv{\mu}{S} \Big)_N + } + = \mpdv{H}{S}{N} +\end{gathered}$$ + +And the corresponding reciprocal relations are then given by: + +$$\begin{gathered} + \boxed{ + \Big( \pdv{P}{T} \Big)_S = \Big( \pdv{S}{V} \Big)_P + } + \\ + \boxed{ + \Big( \pdv{P}{\mu} \Big)_N = \Big( \pdv{N}{V} \Big)_P + } + \\ + \boxed{ + \Big( \pdv{N}{T} \Big)_S = \Big( \pdv{S}{\mu} \Big)_N + } +\end{gathered}$$ + + +## Helmholtz free energy + +The following Maxwell relations can be derived +from the Helmholtz free energy $F(T, V, N)$: + +$$\begin{gathered} + - \mpdv{F}{V}{T} = + \boxed{ + \Big( \pdv{S}{V} \Big)_T = \Big( \pdv{P}{T} \Big)_V + } + = - \mpdv{F}{T}{V} + \\ + \mpdv{F}{V}{N} = + \boxed{ + \Big( \pdv{\mu}{V} \Big)_N = - \Big( \pdv{P}{N} \Big)_V + } + = \mpdv{F}{N}{V} + \\ + \mpdv{F}{T}{N} = + \boxed{ + \Big( \pdv{\mu}{T} \Big)_N = - \Big( \pdv{S}{N} \Big)_T + } + = \mpdv{F}{N}{T} +\end{gathered}$$ + +And the corresponding reciprocal relations are then given by: + +$$\begin{gathered} + \boxed{ + \Big( \pdv{V}{S} \Big)_T = \Big( \pdv{T}{P} \Big)_V + } + \\ + \boxed{ + \Big( \pdv{V}{\mu} \Big)_N = - \Big( \pdv{N}{P} \Big)_V + } + \\ + \boxed{ + \Big( \pdv{T}{\mu} \Big)_N = - \Big( \pdv{N}{S} \Big)_T + } +\end{gathered}$$ + + +## Gibbs free energy + +The following Maxwell relations can be derived +from the Gibbs free energy $G(T, P, N)$: + +$$\begin{gathered} + \mpdv{G}{T}{P} = + \boxed{ + \Big( \pdv{V}{T} \Big)_P = - \Big( \pdv{S}{P} \Big)_T + } + = \mpdv{G}{P}{T} + \\ + \mpdv{G}{N}{P} = + \boxed{ + \Big( \pdv{V}{N} \Big)_P = \Big( \pdv{\mu}{P} \Big)_N + } + = \mpdv{G}{P}{N} + \\ + \mpdv{G}{T}{N} = + \boxed{ + \Big( \pdv{\mu}{T} \Big)_N = - \Big( \pdv{S}{N} \Big)_T + } + = \mpdv{G}{N}{T} +\end{gathered}$$ + +And the corresponding reciprocal relations are then given by: + +$$\begin{gathered} + \boxed{ + \Big( \pdv{T}{V} \Big)_P = - \Big( \pdv{P}{S} \Big)_T + } + \\ + \boxed{ + \Big( \pdv{N}{V} \Big)_P = \Big( \pdv{P}{\mu} \Big)_N + } + \\ + \boxed{ + \Big( \pdv{T}{\mu} \Big)_N = - \Big( \pdv{N}{S} \Big)_T + } +\end{gathered}$$ + + +## Landau potential + +The following Maxwell relations can be derived +from the Gibbs free energy $\Omega(T, V, \mu)$: + +$$\begin{gathered} + - \mpdv{\Omega}{V}{T} = + \boxed{ + \Big( \pdv{S}{V} \Big)_T = \Big( \pdv{P}{T} \Big)_V + } + = - \mpdv{\Omega}{T}{V} + \\ + - \mpdv{\Omega}{\mu}{V} = + \boxed{ + \Big( \pdv{P}{\mu} \Big)_V = \Big( \pdv{N}{V} \Big)_\mu + } + = - \mpdv{\Omega}{V}{\mu} + \\ + - \mpdv{\Omega}{T}{\mu} = + \boxed{ + \Big( \pdv{N}{T} \Big)_\mu = \Big( \pdv{S}{\mu} \Big)_T + } + = - \mpdv{\Omega}{\mu}{T} +\end{gathered}$$ + +And the corresponding reciprocal relations are then given by: + +$$\begin{gathered} + \boxed{ + \Big( \pdv{V}{S} \Big)_T = \Big( \pdv{T}{P} \Big)_V + } + \\ + \boxed{ + \Big( \pdv{\mu}{P} \Big)_V = \Big( \pdv{V}{N} \Big)_\mu + } + \\ + \boxed{ + \Big( \pdv{T}{N} \Big)_\mu = \Big( \pdv{\mu}{S} \Big)_T + } +\end{gathered}$$ + + + +## References +1. H. Gould, J. Tobochnik, + *Statistical and thermal physics*, 2nd edition, + Princeton. |