diff options
author | Prefetch | 2023-06-18 17:59:42 +0200 |
---|---|---|
committer | Prefetch | 2023-06-18 17:59:42 +0200 |
commit | e2f6ff4487606f4052b9c912b9faa2c8d8f1ca10 (patch) | |
tree | 16455ba80b2ff443a970945a7ca8bd49cfc8377b /source/know/concept/polar-cylindrical-coordinates | |
parent | 5a4eb1d13110048b3714754817b3f38d7a55970b (diff) |
Improve knowledge base
Diffstat (limited to 'source/know/concept/polar-cylindrical-coordinates')
-rw-r--r-- | source/know/concept/polar-cylindrical-coordinates/index.md | 296 |
1 files changed, 296 insertions, 0 deletions
diff --git a/source/know/concept/polar-cylindrical-coordinates/index.md b/source/know/concept/polar-cylindrical-coordinates/index.md new file mode 100644 index 0000000..2223996 --- /dev/null +++ b/source/know/concept/polar-cylindrical-coordinates/index.md @@ -0,0 +1,296 @@ +--- +title: "Polar cylindrical coordinates" +sort_title: "Polar cylindrical coordinates" +date: 2021-07-26 +categories: +- Mathematics +- Physics +layout: "concept" +--- + +**Polar cylindrical coordinates** extend polar coordinates $$(r, \varphi)$$ to 3D, +by describing the location of a point in space +using the variables $$(r, \varphi, z)$$. +The $$z$$-axis is unchanged from the Cartesian system, +hence the name *cylindrical*. + +[Cartesian coordinates](/know/concept/cartesian-coordinates/) $$(x, y, z)$$ +and the cylindrical system $$(r, \varphi, z)$$ are related by: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + x + &= r \cos{\varphi} + \\ + y + &= r \sin{\varphi} + \\ + z + &= z + \end{aligned} + } +\end{aligned}$$ + +Conversely, a point given in $$(x, y, z)$$ +can be converted to $$(r, \varphi, z)$$ using these formulae, +where $$\mathtt{atan2}$$ is the 2-argument arctangent, +which is needed to handle the signs correctly: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + r + &= \sqrt{x^2 + y^2} + \\ + \varphi + &= \mathtt{atan2}(y, x) + \\ + z + &= z + \end{aligned} + } +\end{aligned}$$ + +Polar cylindrical coordinates form +an [orthogonal curvilinear system](/know/concept/orthogonal-curvilinear-coordinates/), +whose **scale factors** $$h_r$$, $$h_\varphi$$ and $$h_z$$ we need. +To get those, we calculate the unnormalized local basis: + +$$\begin{aligned} + h_r \vu{e}_r + &= \vu{e}_x \pdv{x}{r} + \vu{e}_y \pdv{y}{r} + \vu{e}_z \pdv{z}{r} + \\ + &= \vu{e}_x \cos{\varphi} + \vu{e}_y \sin{\varphi} + \\ + h_\varphi \vu{e}_\varphi + &= \vu{e}_x \pdv{x}{\varphi} + \vu{e}_y \pdv{y}{\varphi} + \vu{e}_z \pdv{z}{\varphi} + \\ + &= - \vu{e}_x \: r \sin{\varphi} + \vu{e}_y \: r \cos{\varphi} + \\ + h_z \vu{e}_z + &= \vu{e}_x \pdv{x}{z} + \vu{e}_y \pdv{y}{z} + \vu{e}_z \pdv{z}{z} + \\ + &= \vu{e}_z +\end{aligned}$$ + +By normalizing the **local basis vectors** +$$\vu{e}_r$$, $$\vu{e}_\varphi$$ and $$\vu{e}_z$$, +we arrive at these expressions: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + h_r + &= 1 + \\ + h_\varphi + &= r + \\ + h_z + &= 1 + \end{aligned} + } + \qquad\qquad + \boxed{ + \begin{aligned} + \vu{e}_r + &= \vu{e}_x \cos{\varphi} + \vu{e}_y \sin{\varphi} + \\ + \vu{e}_\varphi + &= - \vu{e}_x \sin{\varphi} + \vu{e}_y \cos{\varphi} + \\ + \vu{e}_z + &= \vu{e}_z + \end{aligned} + } +\end{aligned}$$ + +Thanks to these scale factors, we can easily convert calculus from the Cartesian system +using the standard formulae for orthogonal curvilinear coordinates. + + + +## Differential elements + +For line integrals, +the tangent vector element $$\dd{\vb{\ell}}$$ for a curve is as follows: + +$$\begin{aligned} + \boxed{ + \dd{\vb{\ell}} + = \vu{e}_r \dd{r} + + \: \vu{e}_\varphi \: r \dd{\varphi} + + \: \vu{e}_z \dd{z} + } +\end{aligned}$$ + +For surface integrals, +the normal vector element $$\dd{\vb{S}}$$ for a surface is given by: + +$$\begin{aligned} + \boxed{ + \dd{\vb{S}} + = \vu{e}_r \: r \dd{\varphi} \dd{z} + + \: \vu{e}_\varphi \dd{r} \dd{z} + + \: \vu{e}_z \: r \dd{r} \dd{\varphi} + } +\end{aligned}$$ + +And for volume integrals, +the infinitesimal volume $$\dd{V}$$ takes the following form: + +$$\begin{aligned} + \boxed{ + \dd{V} + = r \dd{r} \dd{\varphi} \dd{z} + } +\end{aligned}$$ + + + +## Common operations + +The basic vector operations (gradient, divergence, curl and Laplacian) are given by: + +$$\begin{aligned} + \boxed{ + \nabla f + = \vu{e}_r \pdv{f}{r} + + \vu{e}_\varphi \frac{1}{r} \pdv{f}{\varphi} + + \mathbf{e}_z \pdv{f}{z} + } +\end{aligned}$$ + +$$\begin{aligned} + \boxed{ + \nabla \cdot \vb{V} + = \pdv{V_r}{r} + \frac{V_r}{r} + + \frac{1}{r} \pdv{V_\varphi}{\varphi} + + \pdv{V_z}{z} + } +\end{aligned}$$ + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \nabla \times \vb{V} + &= \quad \vu{e}_r \bigg( \frac{1}{r} \pdv{V_z}{\varphi} - \pdv{V_\varphi}{z} \bigg) + \\ + &\quad\: + \vu{e}_\varphi \bigg( \pdv{V_r}{z} - \pdv{V_z}{r} \bigg) + \\ + &\quad\: + \vu{e}_z \bigg( \pdv{V_\varphi}{r} + \frac{V_\varphi}{r} - \frac{1}{r} \pdv{V_r}{\varphi} \bigg) + \end{aligned} + } +\end{aligned}$$ + +$$\begin{aligned} + \boxed{ + \nabla^2 f + = \pdvn{2}{f}{r} + \frac{1}{r} \pdv{f}{r} + + \frac{1}{r^2} \pdvn{2}{f}{\varphi} + + \pdvn{2}{f}{z} + } +\end{aligned}$$ + + + +## Uncommon operations + +Uncommon operations include: +the gradient of a divergence $$\nabla (\nabla \cdot \vb{V})$$, +the gradient of a vector $$\nabla \vb{V}$$, +the advection of a vector $$(\vb{U} \cdot \nabla) \vb{V}$$ with respect to $$\vb{U}$$, +the Laplacian of a vector $$\nabla^2 \vb{V}$$, +and the divergence of a 2nd-order tensor $$\nabla \cdot \overline{\overline{\vb{T}}}$$: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \nabla (\nabla \cdot \vb{V}) + &= \quad \vu{e}_r \bigg( \pdvn{2}{V_r}{r} + \frac{1}{r} \mpdv{V_\varphi}{r}{\varphi} + \mpdv{V_z}{r}{z} + + \frac{1}{r} \pdv{V_r}{r} - \frac{1}{r^2} \pdv{V_\varphi}{\varphi} - \frac{V_r}{r^2} \bigg) + \\ + &\quad\: + \vu{e}_\varphi \bigg( \frac{1}{r} \mpdv{V_r}{\varphi}{r} + \frac{1}{r^2} \pdvn{2}{V_\varphi}{\varphi} + + \frac{1}{r} \mpdv{V_z}{\varphi}{z} + \frac{1}{r^2} \pdv{V_r}{\varphi} \bigg) + \\ + &\quad\: + \vu{e}_z \bigg( \mpdv{V_r}{z}{r} + \frac{1}{r} \mpdv{V_\varphi}{z}{\varphi} + \pdvn{2}{V_z}{z} + \frac{1}{r} \pdv{V_r}{z} \bigg) + \end{aligned} + } +\end{aligned}$$ + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \nabla \vb{V} + &= \quad \vu{e}_r \vu{e}_r \pdv{V_r}{r} + + \vu{e}_r \vu{e}_\varphi \pdv{V_\varphi}{r} + + \vu{e}_r \vu{e}_z \pdv{V_z}{r} + \\ + &\quad\: + \vu{e}_\varphi \vu{e}_r \bigg( \frac{1}{r} \pdv{V_r}{\varphi} - \frac{V_\varphi}{r} \bigg) + + \vu{e}_\varphi \vu{e}_\varphi \bigg( \frac{1}{r} \pdv{V_\varphi}{\varphi} + \frac{V_r}{r} \bigg) + + \vu{e}_\varphi \vu{e}_z \frac{1}{r} \pdv{V_z}{\varphi} + \\ + &\quad\: + \vu{e}_z \vu{e}_r \pdv{V_r}{z} + + \vu{e}_z \vu{e}_\varphi \pdv{V_\varphi}{z} + + \vu{e}_z \vu{e}_z \pdv{V_z}{z} + \end{aligned} + } +\end{aligned}$$ + +$$\begin{aligned} + \boxed{ + \begin{aligned} + (\vb{U} \cdot \nabla) \vb{V} + &= \quad \vu{e}_r \bigg( U_r \pdv{V_r}{r} + \frac{U_\varphi}{r} \pdv{V_r}{\varphi} + U_z \pdv{V_r}{z} + - \frac{U_\varphi V_\varphi}{r} \bigg) + \\ + &\quad\: + \vu{e}_\varphi \bigg( U_r \pdv{V_\varphi}{r} + \frac{U_\varphi}{r} \pdv{V_\varphi}{\varphi} + U_z \pdv{V_\varphi}{z} + + \frac{U_\varphi V_r}{r} \bigg) + \\ + &\quad\: + \vu{e}_z \bigg( U_r \pdv{V_z}{r} + \frac{U_\varphi}{r} \pdv{V_z}{\varphi} + U_z \pdv{V_z}{z} \bigg) + \end{aligned} + } +\end{aligned}$$ + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \nabla^2 \vb{V} + &= \quad \vu{e}_r \bigg( \pdvn{2}{V_r}{r} + \frac{1}{r^2} \pdvn{2}{V_r}{\varphi} + \pdvn{2}{V_r}{z} + + \frac{1}{r} \pdv{V_r}{r} - \frac{2}{r^2} \pdv{V_\varphi}{\varphi} - \frac{V_r}{r^2} \bigg) + \\ + &\quad\: + \vu{e}_\varphi \bigg( \pdvn{2}{V_\varphi}{r} + \frac{1}{r^2} \pdvn{2}{V_\varphi}{\varphi} + \pdvn{2}{V_\varphi}{z} + + \frac{2}{r^2} \pdv{V_r}{\varphi} + \frac{1}{r} \pdv{V_\varphi}{r} - \frac{V_\varphi}{r^2} \bigg) + \\ + &\quad\: + \vu{e}_z \bigg( \pdvn{2}{V_z}{r} + \frac{1}{r^2} \pdvn{2}{V_z}{\varphi} + + \pdvn{2}{V_z}{z} + \frac{1}{r} \pdv{V_z}{r} \bigg) + \end{aligned} + } +\end{aligned}$$ + +$$\begin{aligned} + \boxed{ + \begin{aligned} + \nabla \cdot \overline{\overline{\mathbf{T}}} + &= \quad \vu{e}_r \bigg( \pdv{T_{rr}}{r} + \frac{1}{r} \pdv{T_{\varphi r}}{\varphi} + \pdv{T_{zr}}{z} + + \frac{T_{rr}}{r} - \frac{T_{\varphi \varphi}}{r} \bigg) + \\ + &\quad\: + \vu{e}_\varphi \bigg( \pdv{T_{r \varphi}}{r} + \frac{1}{r} \pdv{T_{\varphi \varphi}}{\varphi} + \pdv{T_{z \varphi}}{z} + + \frac{T_{r \varphi}}{r} + \frac{T_{\varphi r}}{r} \bigg) + \\ + &\quad\: + \vu{e}_z \bigg( \pdv{T_{rz}}{r} + \frac{1}{r} \pdv{T_{\varphi z}}{\varphi} + \pdv{T_{zz}}{z} + + \frac{T_{rz}}{r} \bigg) + \end{aligned} + } +\end{aligned}$$ + + + +## References +1. M.L. Boas, + *Mathematical methods in the physical sciences*, 2nd edition, + Wiley. +2. B. Lautrup, + *Physics of continuous matter: exotic and everyday phenomena in the macroscopic world*, 2nd edition, + CRC Press. |