diff options
Diffstat (limited to 'source/know/concept/drude-model')
-rw-r--r-- | source/know/concept/drude-model/index.md | 228 |
1 files changed, 228 insertions, 0 deletions
diff --git a/source/know/concept/drude-model/index.md b/source/know/concept/drude-model/index.md new file mode 100644 index 0000000..7f62ae5 --- /dev/null +++ b/source/know/concept/drude-model/index.md @@ -0,0 +1,228 @@ +--- +title: "Drude model" +date: 2021-09-23 +categories: +- Physics +- Electromagnetism +- Optics +layout: "concept" +--- + +The **Drude model** classically predicts +the dielectric function and electric conductivity of a gas of free charge carriers, +as found in metals and doped semiconductors. + + +## Metals + +An [electromagnetic wave](/know/concept/electromagnetic-wave-equation/) +has an oscillating [electric field](/know/concept/electric-field/) +$E(t) = E_0 \exp(- i \omega t)$ +that exerts a force on the charge carriers, +which have mass $m$ and charge $q$. +They thus obey the following equation of motion, +where $\gamma$ is a frictional damping coefficient: + +$$\begin{aligned} + m \dvn{2}{x}{t} + m \gamma \dv{x}{t} + = q E_0 \exp(- i \omega t) +\end{aligned}$$ + +Inserting the ansatz $x(t) = x_0 \exp(- i \omega t)$ +and isolating for the displacement $x_0$ yields: + +$$\begin{aligned} + - x_0 m \omega^2 - i x_0 m \gamma \omega + = q E_0 + \quad \implies \quad + x_0 + = - \frac{q E_0}{m (\omega^2 + i \gamma \omega)} +\end{aligned}$$ + +The polarization density $P(t)$ is therefore as shown below. +Note that the dipole moment $p$ goes from negative to positive, +and the electric field $E$ from positive to negative. +Let $N$ be the density of carriers in the gas, then: + +$$\begin{aligned} + P(t) + = N p(t) + = N q x(t) + = - \frac{N q^2}{m (\omega^2 + i \gamma \omega)} E(t) +\end{aligned}$$ + +The electric displacement field $D$ is thus as follows, +where $\varepsilon_r$ is the unknown relative permittivity of the gas, +which we will find shortly: + +$$\begin{aligned} + D + = \varepsilon_0 \varepsilon_r E + = \varepsilon_0 E + P + = \varepsilon_0 \bigg( 1 - \frac{N q^2}{\varepsilon_0 m} \frac{1}{\omega^2 + i \gamma \omega} \bigg) E +\end{aligned}$$ + +The parenthesized expression is the desired dielectric function $\varepsilon_r$, +which depends on $\omega$: + +$$\begin{aligned} + \boxed{ + \varepsilon_r(\omega) + = 1 - \frac{\omega_p^2}{\omega^2 + i \gamma \omega} + } +\end{aligned}$$ + +Where we have defined the important so-called **plasma frequency** like so: + +$$\begin{aligned} + \boxed{ + \omega_p + \equiv \sqrt{\frac{N q^2}{\varepsilon_0 m}} + } +\end{aligned}$$ + +If $\gamma = 0$, then $\varepsilon_r$ is +negative $\omega < \omega_p$, +positive for $\omega > \omega_p$, +and zero for $\omega = \omega_p$. +Respectively, this leads to +an imaginary index $\sqrt{\varepsilon_r}$ (high absorption), +a real index tending to $1$ (transparency), +and the possibility of self-sustained plasma oscillations. +For metals, $\omega_p$ lies in the UV. + +We can refine this result for $\varepsilon_r$, +by recognizing the (mean) velocity $v = \idv{x}{t}$, +and rewriting the equation of motion accordingly: + +$$\begin{aligned} + m \dv{v}{t} + m \gamma v = q E(t) +\end{aligned}$$ + +Note that $m v$ is simply the momentum $p$. +We define the **momentum scattering time** $\tau \equiv 1 / \gamma$, +which represents the average time between collisions, +where each collision resets the involved particles' momentums to zero. +Or, more formally: + +$$\begin{aligned} + \dv{p}{t} + = - \frac{p}{\tau} + q E +\end{aligned}$$ + +Returning to the equation for the mean velocity $v$, +we insert the ansatz $v(t) = v_0 \exp(- i \omega t)$, +for the same electric field $E(t) = E_0 \exp(-i \omega t)$ as before: + +$$\begin{aligned} + - i m \omega v_0 + \frac{m}{\tau} v_0 = q E_0 + \quad \implies \quad + v_0 = \frac{q \tau}{m (1 - i \omega \tau)} E_0 +\end{aligned}$$ + +From $v(t)$, we find the resulting average current density $J(t)$ to be as follows: + +$$\begin{aligned} + J(t) + = - N q v(t) + = \sigma E(t) +\end{aligned}$$ + +Where $\sigma(\omega)$ is the **AC conductivity**, +which depends on the **DC conductivity** $\sigma_0$: + +$$\begin{aligned} + \boxed{ + \sigma + = \frac{\sigma_0}{1 - i \omega \tau} + } + \qquad \quad + \boxed{ + \sigma_0 + = \frac{N q^2 \tau}{m} + } +\end{aligned}$$ + +We can use these quantities to rewrite +the dielectric function $\varepsilon_r$ from earlier: + +$$\begin{aligned} + \boxed{ + \varepsilon_r(\omega) + = 1 + \frac{i \sigma(\omega)}{\varepsilon_0 \omega} + } +\end{aligned}$$ + + +## Doped semiconductors + +Doping a semiconductor introduces +free electrons (n-type) +or free holes (p-type), +which can be treated as free particles +moving in the bands of the material. + +The Drude model can also be used in this case, +by replacing the actual carrier mass $m$ +by the effective mass $m^*$. +Furthermore, semiconductors already have +a high intrinsic permittivity $\varepsilon_{\mathrm{int}}$ +before the dopant is added, +so the diplacement field $D$ is: + +$$\begin{aligned} + D + = \varepsilon_0 E + P_{\mathrm{int}} + P_{\mathrm{free}} + = \varepsilon_{\mathrm{int}} \varepsilon_0 E - \frac{N q^2}{m^* (\omega^2 + i \gamma \omega)} E +\end{aligned}$$ + +Where $P_{\mathrm{int}}$ is the intrinsic undoped polarization, +and $P_{\mathrm{free}}$ is the contribution of the free carriers. +The dielectric function $\varepsilon_r(\omega)$ is therefore given by: + +$$\begin{aligned} + \boxed{ + \varepsilon_r(\omega) + = \varepsilon_{\mathrm{int}} \Big( 1 - \frac{\omega_p^2}{\omega^2 + i \gamma \omega} \Big) + } +\end{aligned}$$ + +Where the plasma frequency $\omega_p$ has been redefined as follows +to include $\varepsilon_\mathrm{int}$: + +$$\begin{aligned} + \boxed{ + \omega_p + = \sqrt{\frac{N q^2}{\varepsilon_{\mathrm{int}} \varepsilon_0 m^*}} + } +\end{aligned}$$ + +The meaning of $\omega_p$ is the same as for metals, +with high absorption for $\omega < \omega_p$. +However, due to the lower carrier density $N$ in a semiconductor, +$\omega_p$ lies in the IR rather than UV. + +However, instead of asymptotically going to $1$ for $\omega > \omega_p$ like a metal, +$\varepsilon_r$ tends to $\varepsilon_\mathrm{int}$ instead, +and crosses $1$ along the way, +at which point the reflectivity is zero. +This occurs at: + +$$\begin{aligned} + \omega^2 + = \frac{\varepsilon_{\mathrm{int}}}{\varepsilon_{\mathrm{int}} - 1} \omega_p^2 +\end{aligned}$$ + +This is used to experimentally determine the effective mass $m^*$ +of the doped semiconductor, +by finding which value of $m^*$ gives the measured $\omega$. + + + +## References +1. M. Fox, + *Optical properties of solids*, 2nd edition, + Oxford. +2. S.H. Simon, + *The Oxford solid state basics*, + Oxford. |