summaryrefslogtreecommitdiff
path: root/source/know/concept/heaviside-step-function
diff options
context:
space:
mode:
Diffstat (limited to 'source/know/concept/heaviside-step-function')
-rw-r--r--source/know/concept/heaviside-step-function/index.md96
1 files changed, 96 insertions, 0 deletions
diff --git a/source/know/concept/heaviside-step-function/index.md b/source/know/concept/heaviside-step-function/index.md
new file mode 100644
index 0000000..30b5f5d
--- /dev/null
+++ b/source/know/concept/heaviside-step-function/index.md
@@ -0,0 +1,96 @@
+---
+title: "Heaviside step function"
+date: 2021-02-25
+categories:
+- Mathematics
+- Physics
+layout: "concept"
+---
+
+The **Heaviside step function** $\Theta(t)$,
+is a discontinuous function used for enforcing causality
+or for representing a signal switched on at $t = 0$.
+It is defined as:
+
+$$\begin{aligned}
+ \boxed{
+ \Theta(t) =
+ \begin{cases}
+ 0 & \mathrm{if}\: t < 0 \\
+ 1 & \mathrm{if}\: t > 1
+ \end{cases}
+ }
+\end{aligned}$$
+
+The value of $\Theta(t \!=\! 0)$ varies between definitions;
+common choices are $0$, $1$ and $1/2$.
+In practice, this rarely matters, and some authors even
+change their definition on the fly for convenience.
+For physicists, $\Theta(0) = 1$ is generally best, such that:
+
+$$\begin{aligned}
+ \boxed{
+ \forall n \in \mathbb{R}: \Theta^n(t) = \Theta(t)
+ }
+\end{aligned}$$
+
+Unsurprisingly, the first-order derivative of $\Theta(t)$ is
+the [Dirac delta function](/know/concept/dirac-delta-function/):
+
+$$\begin{aligned}
+ \boxed{
+ \Theta'(t) = \delta(t)
+ }
+\end{aligned}$$
+
+The [Fourier transform](/know/concept/fourier-transform/)
+of $\Theta(t)$ is as follows,
+where $\pv{}$ is the Cauchy principal value,
+$A$ and $s$ are constants from the FT's definition,
+and $\mathrm{sgn}$ is the signum function:
+
+$$\begin{aligned}
+ \boxed{
+ \tilde{\Theta}(\omega)
+ = \frac{A}{|s|} \Big( \pi \delta(\omega) + i \: \mathrm{sgn}(s) \pv{\frac{1}{\omega}} \Big)
+ }
+\end{aligned}$$
+
+<div class="accordion">
+<input type="checkbox" id="proof-fourier"/>
+<label for="proof-fourier">Proof</label>
+<div class="hidden">
+<label for="proof-fourier">Proof.</label>
+In this case, it is easiest to use $\Theta(0) = 1/2$,
+such that the Heaviside step function can be expressed
+using the signum function $\mathrm{sgn}(t)$:
+
+$$\begin{aligned}
+ \Theta(t) = \frac{1}{2} + \frac{\mathrm{sgn}(t)}{2}
+\end{aligned}$$
+
+We then take the Fourier transform,
+where $A$ and $s$ are constants from its definition:
+
+$$\begin{aligned}
+ \tilde{\Theta}(\omega)
+ = \hat{\mathcal{F}}\{\Theta(t)\}
+ = \frac{A}{2} \Big( \int_{-\infty}^\infty \exp(i s \omega t) \dd{t} + \int_{-\infty}^\infty \mathrm{sgn}(t) \exp(i s \omega t) \dd{t} \Big)
+\end{aligned}$$
+
+The first term is proportional to the Dirac delta function.
+The second integral is problematic, so we take the Cauchy principal value $\pv{}$
+and look up the integral:
+
+$$\begin{aligned}
+ \tilde{\Theta}(\omega)
+ &= A \pi \delta(s \omega) + \frac{A}{2} \pv{\int_{-\infty}^\infty \mathrm{sgn}(t) \exp(i s \omega t) \dd{t}}
+ = \frac{A}{|s|} \pi \delta(\omega) + i \frac{A}{s} \pv{\frac{1}{\omega}}
+\end{aligned}$$
+</div>
+</div>
+
+The use of $\pv{}$ without an integral is an abuse of notation,
+and means that this result only makes sense when wrapped in an integral.
+Formally, $\pv{\{1 / \omega\}}$ is a [Schwartz distribution](/know/concept/schwartz-distribution/).
+