diff options
Diffstat (limited to 'source/know/concept/interaction-picture')
| -rw-r--r-- | source/know/concept/interaction-picture/index.md | 46 | 
1 files changed, 24 insertions, 22 deletions
diff --git a/source/know/concept/interaction-picture/index.md b/source/know/concept/interaction-picture/index.md index 8428bf3..a3bb260 100644 --- a/source/know/concept/interaction-picture/index.md +++ b/source/know/concept/interaction-picture/index.md @@ -39,14 +39,14 @@ Basically, any way of splitting $$\hat{H}_S$$ is valid  as long as $$\hat{H}_{0, S}$$ is time-independent,  but only a few ways are useful. -We now define the unitary conversion operator $$\hat{U}(t)$$ as shown below. -Note its similarity to the [time-evolution operator](/know/concept/time-evolution-operator/) -$$\hat{K}_S(t)$$, but with the opposite sign in the exponent: +We now define the unitary conversion operator $$\hat{U}_0(t)$$ as shown below. +Note its similarity to the +[time-evolution operator](/know/concept/time-evolution-operator/) $$\hat{K}_S(t)$$:  $$\begin{aligned}      \boxed{ -        \hat{U}(t) -        \equiv \exp\!\bigg( \frac{i}{\hbar} \hat{H}_{0,S} t \bigg) +        \hat{U}_0(t) +        \equiv \exp\!\bigg( \!-\! \frac{i}{\hbar} \hat{H}_{0,S} t \bigg)      }  \end{aligned}$$ @@ -56,17 +56,17 @@ and operators $$\hat{L}_I(t)$$ are then defined as follows:  $$\begin{aligned}      \boxed{          \Ket{\psi_I(t)} -        \equiv \hat{U}(t) \Ket{\psi_S(t)} +        \equiv \hat{U}_0^\dagger(t) \Ket{\psi_S(t)}      }      \qquad\qquad      \boxed{          \hat{L}_I(t) -        \equiv \hat{U}(t) \: \hat{L}_S(t) \: \hat{U}{}^\dagger(t) +        \equiv \hat{U}_0^\dagger(t) \: \hat{L}_S(t) \: \hat{U}{}_0(t)      }  \end{aligned}$$  Because $$\hat{H}_{0, S}$$ is time-independent, -it commutes with $$\hat{U}(t)$$, +it commutes with $$\hat{U}_0$$,  so conveniently $$\hat{H}_{0, I} = \hat{H}_{0, S}$$. @@ -78,25 +78,25 @@ we differentiate it and multiply by $$i \hbar$$:  $$\begin{aligned}      i \hbar \dv{}{t} \Ket{\psi_I} -    &= i \hbar \dv{\hat{U}}{t} \Ket{\psi_S} + \hat{U} \bigg( i \hbar \dv{}{t}\Ket{\psi_S} \bigg) +    &= i \hbar \dv{\hat{U}_0^\dagger}{t} \Ket{\psi_S} + \hat{U}_0^\dagger \bigg( i \hbar \dv{}{t}\Ket{\psi_S} \bigg)  \end{aligned}$$ -We insert the definition of $$\hat{U}$$ in the first term +We insert the definition of $$\hat{U}_0$$ in the first term  and the Schrödinger equation into the second, -and use the fact that $$\comm{\hat{H}_{0, S}}{\hat{U}} = 0$$ +and use the fact that $$\comm{\hat{H}_{0, S}}{\hat{U}_0} = 0$$  thanks to the time-independence of $$\hat{H}_{0, S}$$:  $$\begin{aligned}      i \hbar \dv{}{t} \Ket{\psi_I} -    &= - \hat{H}_{0,S} \hat{U} \Ket{\psi_S} + \hat{U} \hat{H}_S \Ket{\psi_S} +    &= - \hat{H}_{0,S} \hat{U}_0^\dagger \Ket{\psi_S} + \hat{U}_0^\dagger \hat{H}_S \Ket{\psi_S}      \\ -    &= \hat{U} \big( \!-\! \hat{H}_{0,S} + \hat{H}_S \big) \Ket{\psi_S} +    &= \hat{U}_0^\dagger \big( \!-\! \hat{H}_{0,S} + \hat{H}_S \big) \Ket{\psi_S}      \\ -    &= \hat{U} \big( \hat{H}_{1,S} \big) \hat{U}{}^\dagger \hat{U} \Ket{\psi_S} +    &= \hat{U}_0^\dagger \hat{H}_{1,S} \big( \hat{U}_0 \hat{U}_0^\dagger \big) \Ket{\psi_S}  \end{aligned}$$  Which leads to an analogue of the Schrödinger equation, -with $$\hat{H}_{1,I} = \hat{U} \hat{H}_{1,S} \hat{U}{}^\dagger$$: +with $$\hat{H}_{1,I} = \hat{U}_0^\dagger \hat{H}_{1,S} \hat{U}_0$$:  $$\begin{aligned}      \boxed{ @@ -110,11 +110,11 @@ in order to describe its evolution in time:  $$\begin{aligned}      \dv{\hat{L}_I}{t} -    &= \dv{\hat{U}}{t} \hat{L}_S \hat{U}{}^\dagger + \hat{U} \hat{L}_S \dv{\hat{U}{}^\dagger}{t} -    + \hat{U} \dv{\hat{L}_S}{t} \hat{U}{}^\dagger +    &= \dv{\hat{U}_0^\dagger}{t} \hat{L}_S \hat{U}_0 + \hat{U}_0^\dagger \hat{L}_S \dv{\hat{U}_0}{t} +    + \hat{U}_0^\dagger \dv{\hat{L}_S}{t} \hat{U}_0      \\ -    &= \frac{i}{\hbar} \hat{U} \hat{H}_{0,S} \big( \hat{U}{}^\dagger \hat{U} \big) \hat{L}_S \hat{U}{}^\dagger -    - \frac{i}{\hbar} \hat{U} \hat{L}_S \big( \hat{U}{}^\dagger \hat{U} \big) \hat{H}_{0,S} \hat{U}{}^\dagger +    &= \frac{i}{\hbar} \hat{U}_0^\dagger \hat{H}_{0,S} \big( \hat{U}_0 \hat{U}_0^\dagger \big) \hat{L}_S \hat{U}_0 +    - \frac{i}{\hbar} \hat{U}_0^\dagger \hat{L}_S \big( \hat{U}_0 \hat{U}_0^\dagger \big) \hat{H}_{0,S} \hat{U}_0      + \bigg( \dv{\hat{L}_S}{t} \bigg)_I      \\      &= \frac{i}{\hbar} \hat{H}_{0,I} \hat{L}_I @@ -144,13 +144,15 @@ can be solved in isolation in a kind of Schrödinger picture.  What about the time evolution operator $$\hat{K}_S(t)$$?  Its interaction version $$\hat{K}_I(t)$$  is unsurprisingly obtained by the standard transform -$$\hat{K}_I = \hat{U} \hat{K}_S \hat{U}^\dagger$$: +$$\hat{K}_I = \hat{U}_0^\dagger \hat{K}_S \hat{U}_0$$:  $$\begin{aligned}      \Ket{\psi_I(t)} -    &= \hat{U}(t) \Ket{\psi_S(t)} +    &= \hat{U}_0^\dagger(t) \Ket{\psi_S(t)}      \\ -    &= \hat{U}(t) \: \hat{K}_S(t) \: \hat{U}^\dagger(t) \Ket{\psi_I(0)} +    &= \hat{U}_0^\dagger(t) \: \hat{K}_S(t) \Ket{\psi_S(0)} +    \\ +    &= \hat{U}_0^\dagger(t) \: \hat{K}_S(t) \: \hat{U}_0(t) \: \hat{U}_0^\dagger(t) \Ket{\psi_S(0)}      \\      &\equiv \hat{K}_I(t) \Ket{\psi_I(0)}  \end{aligned}$$  | 
